Spin-neutral currents for spintronics

Description

<jats:title>Abstract</jats:title><jats:p>Electric currents carrying a net spin polarization are widely used in spintronics, whereas globally spin-neutral currents are expected to play no role in spin-dependent phenomena. Here we show that, in contrast to this common expectation, spin-independent conductance in compensated antiferromagnets and normal metals can be efficiently exploited in spintronics, provided their magnetic space group symmetry supports a non-spin-degenerate Fermi surface. Due to their momentum-dependent spin polarization, such antiferromagnets can be used as active elements in antiferromagnetic tunnel junctions (AFMTJs) and produce a giant tunneling magnetoresistance (TMR) effect. Using RuO<jats:sub>2</jats:sub> as a representative compensated antiferromagnet exhibiting spin-independent conductance along the [001] direction but a non-spin-degenerate Fermi surface, we design a RuO<jats:sub>2</jats:sub>/TiO<jats:sub>2</jats:sub>/RuO<jats:sub>2</jats:sub> (001) AFMTJ, where a globally spin-neutral charge current is controlled by the relative orientation of the Néel vectors of the two RuO<jats:sub>2</jats:sub> electrodes, resulting in the TMR effect as large as ~500%. These results are expanded to normal metals which can be used as a counter electrode in AFMTJs with a single antiferromagnetic layer or other elements in spintronic devices. Our work uncovers an unexplored potential of the materials with no global spin polarization for utilizing them in spintronics.</jats:p>

Journal

  • Nature Communications

    Nature Communications 12 (1), 7061-, 2021-12-03

    Springer Science and Business Media LLC

Citations (3)*help

See more

Report a problem

Back to top