A geometric multiscale model for the numerical simulation of blood flow in the human left heart

  • Alberto Zingaro
    MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
  • Ivan Fumagalli
    MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
  • Luca Dede
    MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
  • Marco Fedele
    MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
  • Pasquale C. Africa
    MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
  • Antonio F. Corno
    Children’s Heart Institute, Hermann Children’s Hospital, University of Texas Health, McGovern Medical School, Houston, TX, USA
  • Alfio Quarteroni
    MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy

抄録

<jats:p xml:lang="fr"><p style='text-indent:20px;'>We present a new computational model for the numerical simulation of blood flow in the human left heart. To this aim, we use the Navier-Stokes equations in an Arbitrary Lagrangian Eulerian formulation to account for the endocardium motion and we model the cardiac valves by means of the Resistive Immersed Implicit Surface method. To impose a physiological displacement of the domain boundary, we use a 3D cardiac electromechanical model of the left ventricle coupled to a lumped-parameter (0D) closed-loop model of the remaining circulation. We thus obtain a one-way coupled electromechanics-fluid dynamics model in the left ventricle. To extend the left ventricle motion to the endocardium of the left atrium and to that of the ascending aorta, we introduce a preprocessing procedure according to which an harmonic extension of the left ventricle displacement is combined with the motion of the left atrium based on the 0D model. To better match the 3D cardiac fluid flow with the external blood circulation, we couple the 3D Navier-Stokes equations to the 0D circulation model, obtaining a multiscale coupled 3D-0D fluid dynamics model that we solve via a segregated numerical scheme. We carry out numerical simulations for a healthy left heart and we validate our model by showing that meaningful hemodynamic indicators are correctly reproduced.</p></jats:p>

収録刊行物

被引用文献 (1)*注記

もっと見る

詳細情報 詳細情報について

  • CRID
    1360579820498988544
  • DOI
    10.3934/dcdss.2022052
  • ISSN
    19371179
    19371632
  • データソース種別
    • Crossref

問題の指摘

ページトップへ