- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Automatic Translation feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Review of Deep Learning Methods in Robotic Grasp Detection
-
- Shehan Caldera
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
-
- Alexander Rassau
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
-
- Douglas Chai
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
Description
<jats:p>For robots to attain more general-purpose utility, grasping is a necessary skill to master. Such general-purpose robots may use their perception abilities to visually identify grasps for a given object. A grasp describes how a robotic end-effector can be arranged to securely grab an object and successfully lift it without slippage. Traditionally, grasp detection requires expert human knowledge to analytically form the task-specific algorithm, but this is an arduous and time-consuming approach. During the last five years, deep learning methods have enabled significant advancements in robotic vision, natural language processing, and automated driving applications. The successful results of these methods have driven robotics researchers to explore the use of deep learning methods in task-generalised robotic applications. This paper reviews the current state-of-the-art in regards to the application of deep learning methods to generalised robotic grasping and discusses how each element of the deep learning approach has improved the overall performance of robotic grasp detection. Several of the most promising approaches are evaluated and the most suitable for real-time grasp detection is identified as the one-shot detection method. The availability of suitable volumes of appropriate training data is identified as a major obstacle for effective utilisation of the deep learning approaches, and the use of transfer learning techniques is proposed as a potential mechanism to address this. Finally, current trends in the field and future potential research directions are discussed.</jats:p>
Journal
-
- Multimodal Technologies and Interaction
-
Multimodal Technologies and Interaction 2 (3), 57-, 2018-09-07
MDPI AG
- Tweet
Details 詳細情報について
-
- CRID
- 1360579820549086976
-
- ISSN
- 24144088
-
- Data Source
-
- Crossref