-
- Alexander Grigor'yan
- Department of Mathematics University of Bielefeld Bielefeld Germany
-
- Satoshi Ishiwata
- Department of Mathematical Sciences Yamagata University Yamagata Japan
-
- Laurent Saloff‐Coste
- Department of Mathematics Cornell University Ithaca New York USA
説明
<jats:title>Abstract</jats:title><jats:p>We obtain optimal estimates of the Poincaré constant of central balls on manifolds with finitely many ends. Surprisingly enough, the Poincaré constant is determined by the <jats:italic>second</jats:italic> largest end. The proof is based on the argument by Kusuoka–Stroock where the heat kernel estimates on the central balls play an essential role. For this purpose, we extend earlier heat kernel estimates obtained by the authors to a larger class of parabolic manifolds with ends.</jats:p>
収録刊行物
-
- Proceedings of the London Mathematical Society
-
Proceedings of the London Mathematical Society 126 (6), 1961-2012, 2023-04-23
Wiley
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1360580230590456832
-
- ISSN
- 1460244X
- 00246115
-
- データソース種別
-
- Crossref
- KAKEN
- OpenAIRE