Poincaré constant on manifolds with ends

説明

<jats:title>Abstract</jats:title><jats:p>We obtain optimal estimates of the Poincaré constant of central balls on manifolds with finitely many ends. Surprisingly enough, the Poincaré constant is determined by the <jats:italic>second</jats:italic> largest end. The proof is based on the argument by Kusuoka–Stroock where the heat kernel estimates on the central balls play an essential role. For this purpose, we extend earlier heat kernel estimates obtained by the authors to a larger class of parabolic manifolds with ends.</jats:p>

収録刊行物

参考文献 (20)*注記

もっと見る

関連プロジェクト

もっと見る

キーワード

問題の指摘

ページトップへ