Metabolic Recruitment in Brain Tissue

  • L.F. Barros
    Centro de Estudios Científicos (CECs), Valdivia, Chile;
  • I. Ruminot
    Centro de Estudios Científicos (CECs), Valdivia, Chile;
  • T. Sotelo-Hitschfeld
    Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
  • R. Lerchundi
    Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), MIRCen, Fontenay-aux-Roses, France
  • I. Fernández-Moncada
    NeuroCentre Magendie, INSERM U1215, University of Bordeaux, Bordeaux, France

抄録

<jats:p>Information processing imposes urgent metabolic demands on neurons, which have negligible energy stores and restricted access to fuel. Here, we discuss metabolic recruitment, the tissue-level phenomenon whereby active neurons harvest resources from their surroundings. The primary event is the neuronal release of K<jats:sup>+</jats:sup>that mirrors workload. Astrocytes sense K<jats:sup>+</jats:sup>in exquisite fashion thanks to their unique coexpression of NBCe1 and α2β2 Na<jats:sup>+</jats:sup>/K<jats:sup>+</jats:sup>ATPase, and within seconds switch to Crabtree metabolism, involving GLUT1, aerobic glycolysis, transient suppression of mitochondrial respiration, and lactate export. The lactate surge serves as a secondary recruiter by inhibiting glucose consumption in distant cells. Additional recruiters are glutamate, nitric oxide, and ammonium, which signal over different spatiotemporal domains. The net outcome of these events is that more glucose, lactate, and oxygen are made available. Metabolic recruitment works alongside neurovascular coupling and various averaging strategies to support the inordinate dynamic range of individual neurons.</jats:p>

収録刊行物

被引用文献 (1)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ