Combined study of Schwinger-boson mean-field theory and linearized tensor renormalization group on Heisenberg ferromagnetic mixed spin (<i>S</i>, <i>σ</i>) chains

  • Xin Yan
    University of Chinese Academy of Sciences 1 Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, College of Physical Sciences, , P. O. Box 4588, Beijing 100049, China
  • Zhen-Gang Zhu
    University of Chinese Academy of Sciences 1 Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, College of Physical Sciences, , P. O. Box 4588, Beijing 100049, China
  • Gang Su
    University of Chinese Academy of Sciences 1 Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, College of Physical Sciences, , P. O. Box 4588, Beijing 100049, China

抄録

<jats:p>The Schwinger-boson mean-field theory (SBMFT) and the linearized tensor renormalization group (LTRG) methods are complementarily applied to explore the thermodynamics of the quantum ferromagnetic mixed spin (S, σ) chains. It is found that the system has double excitations, i.e. a gapless and a gapped excitation; the low-lying spectrum can be approximated by ωk∼Sσ2(S+σ)Jk2 with J the ferromagnetic coupling; and the gap between the two branches is estimated to be △ ∼ J. The Bose-Einstein condensation indicates a ferromagnetic ground state with magnetization mtotz=N(S+σ). At low temperature, the spin correlation length is inversely proportional to temperature (T), the susceptibility behaviors as χ=a1∗1T2+a2∗1T, and the specific heat has the form of C=c1∗T−c2∗T+c3∗T32, with ai (i = 1, 2) and ci (i = 1, 2, 3) the temperature independent constants. The SBMFT results are shown to be in qualitatively agreement with those by the LTRG numerical calculations for S = 1 and σ = 1/2. A comparison of the LTRG results with the experimental data of the model material MnIINiII(NO2)4(en)2(en = ethylenediamine), is made, in which the coupling parameters of the compound are obtained. This study provides useful information for deeply understanding the physical properties of quantum ferromagnetic mixed spin chain materials.</jats:p>

収録刊行物

  • AIP Advances

    AIP Advances 5 (7), 2015-07-01

    AIP Publishing

被引用文献 (1)*注記

もっと見る

問題の指摘

ページトップへ