A novel model for cyanobacteria bloom formation: the critical role of anoxia and ferrous iron

  • L. A. Molot
    Faculty of Environmental Studies York University Toronto ON Canada
  • S. B. Watson
    National Water Research Institute Environment Canada Burlington ON Canada
  • I. F. Creed
    Department of Biology Western University London ON Canada
  • C. G. Trick
    Department of Biology Western University London ON Canada
  • S. K. McCabe
    Department of Biology York University Toronto ON Canada
  • M. J. Verschoor
    Department of Biology York University Toronto ON Canada
  • R. J. Sorichetti
    Department of Biology Western University London ON Canada
  • C. Powe
    Department of Biology York University Toronto ON Canada
  • J. J. Venkiteswaran
    Department of Earth & Environmental Sciences University of Waterloo Waterloo ON Canada
  • S. L. Schiff
    Department of Earth & Environmental Sciences University of Waterloo Waterloo ON Canada

抄録

<jats:title>Summary</jats:title><jats:p> <jats:list> <jats:list-item> <jats:p>A novel conceptual model linking anoxia, phosphorus (<jats:styled-content style="fixed-case">P</jats:styled-content>), nitrogen (<jats:styled-content style="fixed-case">N</jats:styled-content>), iron (Fe) and sulphate to the formation of noxious filamentous and colonial cyanobacteria blooms is presented that reconciles seemingly contradictory ideas about the roles of <jats:styled-content style="fixed-case">P</jats:styled-content>,<jats:styled-content style="fixed-case"> N</jats:styled-content> and Fe in bloom formation.</jats:p> </jats:list-item> <jats:list-item> <jats:p>The model has several critical concepts: (i) P regulates biomass and productivity in fresh waters until excessive loading renders a system N‐limited or light‐limited, but it is the availability of ferrous ions (Fe<jats:sup>2+</jats:sup>) that regulates the ability of cyanobacteria to compete with its eukaryotic competitors; (ii) Fe<jats:sup>2+</jats:sup> diffusing from anoxic sediments is a major Fe source for cyanobacteria, which acquire it by migrating downwards into Fe<jats:sup>2+</jats:sup>‐rich anoxic waters from oxygenated waters; and (iii) subsequent cyanobacterial siderophore production provides a supply of Fe<jats:sup>3+</jats:sup> for reduction at cyanobacteria cell membranes that leads to very low Fe<jats:sup>3+</jats:sup> concentrations in the mixing zone.</jats:p> </jats:list-item> <jats:list-item> <jats:p>When light and temperature are physiologically suitable for cyanobacteria growth, bloom onset is regulated by the onset of internal Fe<jats:sup>2+</jats:sup> loading which in turn is controlled by anoxia, reducible Fe content of surface sediments and sulphate reduction rate.</jats:p> </jats:list-item> <jats:list-item> <jats:p>This conceptual model provides the basis for improving the success of approaches to eutrophication management because of its far‐reaching explanatory power over the wide range of conditions where noxious cyanobacteria blooms have been observed.</jats:p> </jats:list-item> </jats:list> </jats:p>

収録刊行物

被引用文献 (1)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ