Evolutionary transition to the ectomycorrhizal habit in the genomes of a hyperdiverse lineage of mushroom‐forming fungi

  • Brian Looney
    Department of Biology Clark University Worcester MA 01610 USA
  • Shingo Miyauchi
    UMR Interactions Arbres/Microorganismes Centre INRAE Grand Est‐Nancy INRAE Université de Lorraine Champenoux 54000 France
  • Emmanuelle Morin
    UMR Interactions Arbres/Microorganismes Centre INRAE Grand Est‐Nancy INRAE Université de Lorraine Champenoux 54000 France
  • Elodie Drula
    Architecture et Fonction des Macromolécules Biologiques CNRS Aix‐Marseille Univ. Marseille 13009 France
  • Pierre Emmanuel Courty
    Agroécologie, AgroSup Dijon CNRS INRAE Université de Bourgogne Université de Bourgogne Franche‐ Comté Dijon 25000 France
  • Annegret Kohler
    UMR Interactions Arbres/Microorganismes Centre INRAE Grand Est‐Nancy INRAE Université de Lorraine Champenoux 54000 France
  • Alan Kuo
    Lawrence Berkeley National Laboratory US Department of Energy Joint Genome Institute Berkeley CA 94720 USA
  • Kurt LaButti
    Lawrence Berkeley National Laboratory US Department of Energy Joint Genome Institute Berkeley CA 94720 USA
  • Jasmyn Pangilinan
    Lawrence Berkeley National Laboratory US Department of Energy Joint Genome Institute Berkeley CA 94720 USA
  • Anna Lipzen
    Lawrence Berkeley National Laboratory US Department of Energy Joint Genome Institute Berkeley CA 94720 USA
  • Robert Riley
    Lawrence Berkeley National Laboratory US Department of Energy Joint Genome Institute Berkeley CA 94720 USA
  • William Andreopoulos
    Lawrence Berkeley National Laboratory US Department of Energy Joint Genome Institute Berkeley CA 94720 USA
  • Guifen He
    Lawrence Berkeley National Laboratory US Department of Energy Joint Genome Institute Berkeley CA 94720 USA
  • Jenifer Johnson
    Lawrence Berkeley National Laboratory US Department of Energy Joint Genome Institute Berkeley CA 94720 USA
  • Matt Nolan
    Lawrence Berkeley National Laboratory US Department of Energy Joint Genome Institute Berkeley CA 94720 USA
  • Andrew Tritt
    Lawrence Berkeley National Laboratory US Department of Energy Joint Genome Institute Berkeley CA 94720 USA
  • Kerrie W. Barry
    Lawrence Berkeley National Laboratory US Department of Energy Joint Genome Institute Berkeley CA 94720 USA
  • Igor V. Grigoriev
    Lawrence Berkeley National Laboratory US Department of Energy Joint Genome Institute Berkeley CA 94720 USA
  • László G. Nagy
    Synthetic and Systems Biology Unit Institute of Biochemistry, Biological Research Centre Szeged 6726 Hungary
  • David Hibbett
    Department of Biology Clark University Worcester MA 01610 USA
  • Bernard Henrissat
    Architecture et Fonction des Macromolécules Biologiques CNRS Aix‐Marseille Univ. Marseille 13009 France
  • P. Brandon Matheny
    Department of Ecology and Evolutionary Biology University of Tennessee Knoxville TN 37996 USA
  • Jesse Labbé
    Biosciences Division Oak Ridge National Laboratory U.S. Department of Energy Oak Ridge TN 37830 USA
  • Francis M. Martin
    UMR Interactions Arbres/Microorganismes Centre INRAE Grand Est‐Nancy INRAE Université de Lorraine Champenoux 54000 France

説明

<jats:title>Summary</jats:title><jats:p> <jats:list list-type="bullet"> <jats:list-item><jats:p>The ectomycorrhizal (ECM) symbiosis has independently evolved from diverse types of saprotrophic ancestors. In this study, we seek to identify genomic signatures of the transition to the ECM habit within the hyperdiverse Russulaceae.</jats:p></jats:list-item> <jats:list-item><jats:p>We present comparative analyses of the genomic architecture and the total and secreted gene repertoires of 18 species across the order Russulales, of which 13 are newly sequenced, including a representative of a saprotrophic member of Russulaceae, <jats:italic>Gloeopeniophorella convolvens</jats:italic>.</jats:p></jats:list-item> <jats:list-item><jats:p>The genomes of ECM Russulaceae are characterized by a loss of genes for plant cell wall‐degrading enzymes (PCWDEs), an expansion of genome size through increased transposable element (TE) content, a reduction in secondary metabolism clusters, and an association of small secreted proteins (SSPs) with TE ‘nests’, or dense aggregations of TEs. Some PCWDEs have been retained or even expanded, mostly in a species‐specific manner. The genome of <jats:italic>G. convolvens</jats:italic> possesses some characteristics of ECM genomes (e.g. loss of some PCWDEs, TE expansion, reduction in secondary metabolism clusters).</jats:p></jats:list-item> <jats:list-item><jats:p>Functional specialization in ECM decomposition may drive diversification. Accelerated gene evolution predates the evolution of the ECM habit, indicating that changes in genome architecture and gene content may be necessary to prime the evolutionary switch.</jats:p></jats:list-item> </jats:list> </jats:p>

収録刊行物

被引用文献 (1)*注記

もっと見る

問題の指摘

ページトップへ