Evolutionary transition to the ectomycorrhizal habit in the genomes of a hyperdiverse lineage of mushroom‐forming fungi
-
- Brian Looney
- Department of Biology Clark University Worcester MA 01610 USA
-
- Shingo Miyauchi
- UMR Interactions Arbres/Microorganismes Centre INRAE Grand Est‐Nancy INRAE Université de Lorraine Champenoux 54000 France
-
- Emmanuelle Morin
- UMR Interactions Arbres/Microorganismes Centre INRAE Grand Est‐Nancy INRAE Université de Lorraine Champenoux 54000 France
-
- Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques CNRS Aix‐Marseille Univ. Marseille 13009 France
-
- Pierre Emmanuel Courty
- Agroécologie, AgroSup Dijon CNRS INRAE Université de Bourgogne Université de Bourgogne Franche‐ Comté Dijon 25000 France
-
- Annegret Kohler
- UMR Interactions Arbres/Microorganismes Centre INRAE Grand Est‐Nancy INRAE Université de Lorraine Champenoux 54000 France
-
- Alan Kuo
- Lawrence Berkeley National Laboratory US Department of Energy Joint Genome Institute Berkeley CA 94720 USA
-
- Kurt LaButti
- Lawrence Berkeley National Laboratory US Department of Energy Joint Genome Institute Berkeley CA 94720 USA
-
- Jasmyn Pangilinan
- Lawrence Berkeley National Laboratory US Department of Energy Joint Genome Institute Berkeley CA 94720 USA
-
- Anna Lipzen
- Lawrence Berkeley National Laboratory US Department of Energy Joint Genome Institute Berkeley CA 94720 USA
-
- Robert Riley
- Lawrence Berkeley National Laboratory US Department of Energy Joint Genome Institute Berkeley CA 94720 USA
-
- William Andreopoulos
- Lawrence Berkeley National Laboratory US Department of Energy Joint Genome Institute Berkeley CA 94720 USA
-
- Guifen He
- Lawrence Berkeley National Laboratory US Department of Energy Joint Genome Institute Berkeley CA 94720 USA
-
- Jenifer Johnson
- Lawrence Berkeley National Laboratory US Department of Energy Joint Genome Institute Berkeley CA 94720 USA
-
- Matt Nolan
- Lawrence Berkeley National Laboratory US Department of Energy Joint Genome Institute Berkeley CA 94720 USA
-
- Andrew Tritt
- Lawrence Berkeley National Laboratory US Department of Energy Joint Genome Institute Berkeley CA 94720 USA
-
- Kerrie W. Barry
- Lawrence Berkeley National Laboratory US Department of Energy Joint Genome Institute Berkeley CA 94720 USA
-
- Igor V. Grigoriev
- Lawrence Berkeley National Laboratory US Department of Energy Joint Genome Institute Berkeley CA 94720 USA
-
- László G. Nagy
- Synthetic and Systems Biology Unit Institute of Biochemistry, Biological Research Centre Szeged 6726 Hungary
-
- David Hibbett
- Department of Biology Clark University Worcester MA 01610 USA
-
- Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques CNRS Aix‐Marseille Univ. Marseille 13009 France
-
- P. Brandon Matheny
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville TN 37996 USA
-
- Jesse Labbé
- Biosciences Division Oak Ridge National Laboratory U.S. Department of Energy Oak Ridge TN 37830 USA
-
- Francis M. Martin
- UMR Interactions Arbres/Microorganismes Centre INRAE Grand Est‐Nancy INRAE Université de Lorraine Champenoux 54000 France
説明
<jats:title>Summary</jats:title><jats:p> <jats:list list-type="bullet"> <jats:list-item><jats:p>The ectomycorrhizal (ECM) symbiosis has independently evolved from diverse types of saprotrophic ancestors. In this study, we seek to identify genomic signatures of the transition to the ECM habit within the hyperdiverse Russulaceae.</jats:p></jats:list-item> <jats:list-item><jats:p>We present comparative analyses of the genomic architecture and the total and secreted gene repertoires of 18 species across the order Russulales, of which 13 are newly sequenced, including a representative of a saprotrophic member of Russulaceae, <jats:italic>Gloeopeniophorella convolvens</jats:italic>.</jats:p></jats:list-item> <jats:list-item><jats:p>The genomes of ECM Russulaceae are characterized by a loss of genes for plant cell wall‐degrading enzymes (PCWDEs), an expansion of genome size through increased transposable element (TE) content, a reduction in secondary metabolism clusters, and an association of small secreted proteins (SSPs) with TE ‘nests’, or dense aggregations of TEs. Some PCWDEs have been retained or even expanded, mostly in a species‐specific manner. The genome of <jats:italic>G. convolvens</jats:italic> possesses some characteristics of ECM genomes (e.g. loss of some PCWDEs, TE expansion, reduction in secondary metabolism clusters).</jats:p></jats:list-item> <jats:list-item><jats:p>Functional specialization in ECM decomposition may drive diversification. Accelerated gene evolution predates the evolution of the ECM habit, indicating that changes in genome architecture and gene content may be necessary to prime the evolutionary switch.</jats:p></jats:list-item> </jats:list> </jats:p>
収録刊行物
-
- New Phytologist
-
New Phytologist 233 (5), 2294-2309, 2022-01-16
Wiley