Detection of spectral variations of Anomalous Microwave Emission with QUIJOTE and C-BASS

  • R Cepeda-Arroita
    Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Alan Turing building, Oxford Road, Manchester M13 9PL, UK
  • S E Harper
    Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Alan Turing building, Oxford Road, Manchester M13 9PL, UK
  • C Dickinson
    Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Alan Turing building, Oxford Road, Manchester M13 9PL, UK
  • J A Rubiño-Martín
    Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Canary Islands, Spain
  • R T Génova-Santos
    Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Canary Islands, Spain
  • Angela C Taylor
    Sub-department of Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK
  • T J Pearson
    Cahill Centre for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA
  • M Ashdown
    Astrophysics Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK
  • A Barr
    Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Alan Turing building, Oxford Road, Manchester M13 9PL, UK
  • R B Barreiro
    Instituto de Física de Cantabria (CSIC-Universidad de Cantabria), Avda. de los Castros s/n, E-39005 Santander, Spain
  • B Casaponsa
    Instituto de Física de Cantabria (CSIC-Universidad de Cantabria), Avda. de los Castros s/n, E-39005 Santander, Spain
  • F J Casas
    Instituto de Física de Cantabria (CSIC-Universidad de Cantabria), Avda. de los Castros s/n, E-39005 Santander, Spain
  • H C Chiang
    Department of Physics, McGill University, 3600 Rue University, Montréal, QC H3A 2T8, Canada
  • R Fernandez-Cobos
    Instituto de Física de Cantabria (CSIC-Universidad de Cantabria), Avda. de los Castros s/n, E-39005 Santander, Spain
  • R D P Grumitt
    Sub-department of Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK
  • F Guidi
    Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Canary Islands, Spain
  • H M Heilgendorff
    School of Mathematics, Statistics & Computer Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
  • D Herranz
    Instituto de Física de Cantabria (CSIC-Universidad de Cantabria), Avda. de los Castros s/n, E-39005 Santander, Spain
  • L R P Jew
    Sub-department of Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK
  • J L Jonas
    Department of Physics and Electronics, Rhodes University, Grahamstown 6139, South Africa
  • Michael E Jones
    Sub-department of Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK
  • A Lasenby
    Astrophysics Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK
  • J Leech
    Sub-department of Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK
  • J P Leahy
    Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Alan Turing building, Oxford Road, Manchester M13 9PL, UK
  • E Martínez-González
    Instituto de Física de Cantabria (CSIC-Universidad de Cantabria), Avda. de los Castros s/n, E-39005 Santander, Spain
  • M W Peel
    Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Alan Turing building, Oxford Road, Manchester M13 9PL, UK
  • L Piccirillo
    Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Alan Turing building, Oxford Road, Manchester M13 9PL, UK
  • F Poidevin
    Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Canary Islands, Spain
  • A C S Readhead
    Cahill Centre for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA
  • R Rebolo
    Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Canary Islands, Spain
  • B Ruiz-Granados
    Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Canary Islands, Spain
  • J Sievers
    Department of Physics, McGill University, 3600 Rue University, Montréal, QC H3A 2T8, Canada
  • F Vansyngel
    Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Canary Islands, Spain
  • P Vielva
    Instituto de Física de Cantabria (CSIC-Universidad de Cantabria), Avda. de los Castros s/n, E-39005 Santander, Spain
  • R A Watson
    Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Alan Turing building, Oxford Road, Manchester M13 9PL, UK

Abstract

<jats:title>ABSTRACT</jats:title> <jats:p>Anomalous Microwave Emission (AME) is a significant component of Galactic diffuse emission in the frequency range 10–$60\, \mathrm{GHz}$ and a new window into the properties of sub-nanometre-sized grains in the interstellar medium. We investigate the morphology of AME in the ≈10○ diameter λ Orionis ring by combining intensity data from the QUIJOTE experiment at 11, 13, 17, and $19\, \mathrm{GHz}$ and the C-Band All Sky Survey (C-BASS) at $4.76\, \mathrm{GHz}$, together with 19 ancillary data sets between 1.42 and $3000\, \mathrm{GHz}$. Maps of physical parameters at 1○ resolution are produced through Markov chain Monte Carlo (MCMC) fits of spectral energy distributions (SEDs), approximating the AME component with a lognormal distribution. AME is detected in excess of $20\, \sigma$ at degree-scales around the entirety of the ring along photodissociation regions (PDRs), with three primary bright regions containing dark clouds. A radial decrease is observed in the AME peak frequency from $\approx 35\, \mathrm{GHz}$ near the free–free region to $\approx 21\, \mathrm{GHz}$ in the outer regions of the ring, which is the first detection of AME spectral variations across a single region. A strong correlation between AME peak frequency, emission measure and dust temperature is an indication for the dependence of the AME peak frequency on the local radiation field. The AME amplitude normalized by the optical depth is also strongly correlated with the radiation field, giving an overall picture consistent with spinning dust where the local radiation field plays a key role.</jats:p>

Journal

Citations (2)*help

See more

Report a problem

Back to top