Electrokinetic Proton Transport in Triple (H<sup>+</sup>/O<sup>2−</sup>/e<sup>−</sup>) Conducting Oxides as a Key Descriptor for Highly Efficient Protonic Ceramic Fuel Cells

  • Arim Seong
    School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
  • Junyoung Kim
    School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
  • Donghwi Jeong
    School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
  • Sivaprakash Sengodan
    Department of Materials Imperial College London London SW7 2BX UK
  • Meilin Liu
    School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332‐0245 USA
  • Sihyuk Choi
    Department of Aeronautics Mechanical and Electronic Convergence Engineering Kumoh National Institute of Technology Gyeongbuk 39177 Republic of Korea
  • Guntae Kim
    School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea

抄録

<jats:title>Abstract</jats:title><jats:p>Recently, triple (H<jats:sup>+</jats:sup>/O<jats:sup>2−</jats:sup>/e<jats:sup>−</jats:sup>) conducting oxides (TCOs) have shown tremendous potential to improve the performance of various types of energy conversion and storage applications. The systematic understanding of the TCO is limited by the difficulty of properly identifying the proton movement in the TCO. Herein, the isotope exchange diffusion profile (IEDP) method is employed via time‐of‐flight secondary ion mass spectrometry to evaluate kinetic properties of proton in the layered perovskite‐type TCOs, PrBa<jats:sub>0.5</jats:sub>Sr<jats:sub>0.5</jats:sub>Co<jats:sub>1.5</jats:sub>Fe<jats:sub>0.5</jats:sub>O<jats:sub>5+</jats:sub><jats:italic><jats:sub><jats:italic>δ</jats:italic></jats:sub></jats:italic> (PBSCF).Within the strategy, the PBSCF shows two orders of magnitude higher proton tracer diffusion coefficient (<jats:italic>D</jats:italic><jats:sup>*</jats:sup><jats:sub>H</jats:sub>, 1.04 × 10<jats:sup>−6</jats:sup> cm<jats:sup>2</jats:sup> s<jats:sup>−1</jats:sup> at 550 °C) than its oxygen tracer diffusion coefficient at even higher temperature range (<jats:italic>D</jats:italic><jats:sup>*</jats:sup><jats:sub>O,</jats:sub> 1.9 × 10<jats:sup>−8</jats:sup> cm<jats:sup>2</jats:sup> s<jats:sup>−1</jats:sup> at 590 °C). Also, the surface exchange coefficient of a proton (<jats:italic>k</jats:italic>*<jats:sub>H</jats:sub>) is successfully obtained in the value of 2.60 × 10<jats:sup>−7</jats:sup> cm s<jats:sup>−1</jats:sup> at 550 °C. In this research, an innovative way is provided to quantify the proton kinetic properties (<jats:italic>D</jats:italic><jats:sup>*</jats:sup><jats:sub>H</jats:sub> and <jats:italic>k</jats:italic>*<jats:sub>H</jats:sub>) of TCOs being a crucial indicator for characterizing the electrochemical behavior of proton and the mechanism of electrode reactions.</jats:p>

収録刊行物

被引用文献 (1)*注記

もっと見る

問題の指摘

ページトップへ