On the length spectrum metric in infinite dimensional Teichmüller spaces

DOI 被引用文献1件 オープンアクセス

説明

We consider the length spectrum metric dL in infinite dimensional Teichmuller space T(R0). It is known that dL defines the same topology as that of the Teichmuller metric dT on T(R0) if R0 is a topologically finite Riemann surface. In 2003, Shiga proved that dL and dT define the same topology on T(R0) if R0 is a topologically infinite Riemann surface which can be decomposed into pairs of pants such that the lengths of all their boundary components except punctures are uniformly bounded by some positive constants from above and below. In this paper, we extend Shiga's result to Teichmuller spaces of Riemann surfaces satisfying a certain geometric condition.

収録刊行物

被引用文献 (1)*注記

もっと見る

キーワード

詳細情報 詳細情報について

  • CRID
    1360581634782985088
  • DOI
    10.5186/aasfm.2014.3925
  • ISSN
    17982383
    1239629X
  • データソース種別
    • Crossref
    • OpenAIRE

問題の指摘

ページトップへ