Primary and Secondary Gravity Waves and Large‐Scale Wind Changes Generated by the Tonga Volcanic Eruption on 15 January 2022: Modeling and Comparison With ICON‐MIGHTI Winds
-
- Sharon L. Vadas
- Northwest Research Associates Boulder CO USA
-
- Erich Becker
- Northwest Research Associates Boulder CO USA
-
- Cosme Figueiredo
- National Institute for Space Research INPE São José dos Campos Brazil
-
- Katrina Bossert
- School of Earth and Space Exploration School of Mathematical and Statistical Sciences Arizona State University Tempe AZ USA
-
- Brian J. Harding
- University of California, Berkeley Berkeley CA USA
-
- L. Claire Gasque
- University of California, Berkeley Berkeley CA USA
この論文をさがす
説明
<jats:title>Abstract</jats:title><jats:p>We simulate the primary and secondary atmospheric gravity waves (GWs) excited by the upward movement of air generated by the Hunga Tonga‐Hunga Ha'apai (hereafter “Tonga”) volcanic eruption on 15 January 2022. The Model for gravity wavE SOurce, Ray trAcing and reConstruction (MESORAC) is used to calculate the primary GWs and the local body forces/heatings generated where they dissipate. We add these forces/heatings to the HIgh Altitude Mechanistic general Circulation Model (HIAMCM) to determine the secondary GWs and large‐scale wind changes that result. We find that a wide range of medium to large‐scale secondary GWs with concentric ring structure are created having horizontal wind amplitudes of <jats:italic>u</jats:italic>′, <jats:italic>v</jats:italic>′ ∼ 100–200 m/s, ground‐based periods of <jats:italic>τ</jats:italic><jats:sub><jats:italic>r</jats:italic></jats:sub> ∼ 20 min to 7 hr, horizontal phase speeds of <jats:italic>c</jats:italic><jats:sub><jats:italic>H</jats:italic></jats:sub> ∼ 100–600 m/s, and horizontal wavelengths of <jats:italic>λ</jats:italic><jats:sub><jats:italic>H</jats:italic></jats:sub> ∼ 400–7,500 km. The fastest secondary GWs with <jats:italic>c</jats:italic><jats:sub><jats:italic>H</jats:italic></jats:sub> ∼ 500–600 m/s are large‐scale GWs with <jats:italic>λ</jats:italic><jats:sub><jats:italic>H</jats:italic></jats:sub> ∼ 3,000–7,500 km and <jats:italic>τ</jats:italic><jats:sub><jats:italic>r</jats:italic></jats:sub> ∼ 1.5–7 hr. They reach the antipode over Africa ∼9 hr after creation. Large‐scale temporally and spatially varying wind changes of ∼80–120 m/s are created where the secondary GWs dissipate. We analyze the Tonga waves measured by the Michelson Interferometer for Global High‐resolution Thermospheric Imaging (MIGHTI) on the National Aeronautics and Space Administration Ionospheric Connection Explorer (ICON), and find that the observed GWs were medium to large‐scale with <jats:italic>c</jats:italic><jats:sub><jats:italic>H</jats:italic></jats:sub> ∼ 100–600 m/s and <jats:italic>λ</jats:italic><jats:sub><jats:italic>H</jats:italic></jats:sub> ∼ 800–7,500 km, in good agreement with the simulated secondary GWs. We also find good agreement between ICON‐MIGHTI and HIAMCM for the timing, amplitudes, locations, and wavelengths of the Tonga waves, provided we increase the GW amplitudes by ∼2 and sample them ∼30 min later than ICON.</jats:p>
収録刊行物
-
- Journal of Geophysical Research: Space Physics
-
Journal of Geophysical Research: Space Physics 128 (2), e2022JA031138-, 2023-02
American Geophysical Union (AGU)