Mn<sup>III</sup>(tetra-biphenyl-porphyrin)–TCNE Single-Chain Magnet via Suppression of the Interchain Interactions

  • Ryuta Ishikawa
    Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
  • Keiichi Katoh
    Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
  • Brian K. Breedlove
    Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
  • Masahiro Yamashita
    Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan

この論文をさがす

説明

A single-chain magnet (SCM) of [Mn(TBPP)(TCNE)]·4m-PhCl(2) (1), where TBPP(2-) = meso-tetra(4-biphenyl)porphyrinate; TCNE(•-) = tetracyanoethenide radical anion; m-PhCl(2) = meta-dichlorobenzene, was prepared via suppression of interchain interactions. 1 has a one-dimensional alternating Mn(III)(porphrin)-TCNE(•-)chain structure similar to those of a family of complexes reported by Miller and co-workers. From a comparison of the static magnetic properties of 1 with other Mn(III)(porphyrin)-TCNE(•-) chains, a magneto-structural correlation between the intrachain magnetic exchange and both the dihedral angle between the mean plane on [Mn(TBPP)(TCNE)] and Mn-N≡C was observed. The ac magnetic susceptibility data of 1 could be fit with the Arrhenius law, indicating that slow magnetic relaxation and ruling out three-dimensional long-range ordering and spin-glass-like behavior. The Cole-Cole plot for 1 was semicircular, verifying that it is an SCM. Therefore, 1 is an ideal single-chain magnet with significantly strong intrachain magnetic exchange interactions beyond the Ising limit.

収録刊行物

  • Inorganic Chemistry

    Inorganic Chemistry 51 (16), 9123-9131, 2012-08-01

    American Chemical Society (ACS)

被引用文献 (3)*注記

もっと見る

参考文献 (92)*注記

もっと見る

関連研究データ

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ