On irregular threefolds and fourfolds with numerically trivial canonical bundle
この論文をさがす
説明
We prove that for a smooth projective irregular $3$-fold $X$ with $K_X\equiv 0$ and a nef and big divisor $L$ on $X$, $|mL+P|$ gives a birational map for all $m\geq 3$ and all $P\in \text{Pic}^0(X)$. We also use the same method to deal with $4$-folds, and prove that for a smooth projective irregular $4$-fold $X$ with $K_X\equiv 0$ and an ample divisor $L$ on $X$, $|mL+P|$ gives a birational map for all $m\geq 5$ and all $P\in \text{Pic}^0(X)$. These results are also optimal.
21 pages. Final version, to appear in Math. Zeit
収録刊行物
-
- Mathematische Zeitschrift
-
Mathematische Zeitschrift 284 (1-2), 95-115, 2016-04-02
Springer Science and Business Media LLC
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1360848656101831040
-
- ISSN
- 14321823
- 00255874
-
- 資料種別
- journal article
-
- データソース種別
-
- Crossref
- KAKEN
- OpenAIRE