- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Metasomatized lithospheric mantle beneath Turkana depression in southern Ethiopia (the East Africa Rift): geochemical and Sr–Nd–Pb isotopic characteristics
Search this article
Description
Mantle xenoliths entrained in Quaternary alkaline basalts from the Turkana Depression in southern Ethiopia (the East Africa Rift) were studied for their geochemical and Sr–Nd–Pb isotopic compositions to constrain the evolution of the lithosphere. The investigated mantle xenoliths are spinel lherzolites in composition with a protogranular texture. They can be classified into two types: anhydrous and hydrous spinel lherzolites; the latter group characterized by the occurrences of pargasite and phlogopite. The compositions of whole-rock basaltic component (CaO = 3.8–5.6 wt%, Al2O3 = 2.5–4.1 wt%, and MgO = 34.7–38.1 wt%), spinel (Cr# = 0.062–0.117, Al2O3 = 59.0–64.4 wt%) and clinopyroxene (Mg# = 88.4–91.7, Al2O3 = 5.2–6.7 wt%) indicate that the lherzolites are fertile and have not experienced significant partial melting. Both types are characterized by depleted 87Sr/86Sr (0.70180–0.70295) and high 143Nd/144Nd (0.51299–0.51348) with wide ranges of 206Pb/204Pb (17.86–19.68) isotopic compositions. The variations of geochemical and isotopic compositions can be explained by silicate metasomatism induced by different degree of magma infiltrations from ascending mantle plume. The thermobarometric estimations suggest that the spinel lherzolites were derived from depths of 50–70 km (15.6–22.2 kb) and entrained in the alkaline magma at 847–1,052°C. Most of the spinel lherzolites from this study record an elevated geotherm (60–90 mW/m2) that is related to the presence of rising mantle plume in an active tectonic setting. Sm–Nd isotopic systematic gives a mean TDM model age of 0.95 Ga, interpreted as the minimum depletion age of the subcontinental lithosphere beneath the region.
Journal
-
- Contributions to Mineralogy and Petrology
-
Contributions to Mineralogy and Petrology 162 (5), 889-907, 2011-04-01
Springer Science and Business Media LLC
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1360848656160252032
-
- ISSN
- 14320967
- 00107999
-
- HANDLE
- 10019.1/19047
-
- Article Type
- journal article
-
- Data Source
-
- Crossref
- KAKEN
- OpenAIRE