<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mi>K</mml:mi></mml:math>-theoretic analogues of factorial Schur<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" display="inline" overflow="scroll"><mml:mi>P</mml:mi></mml:math>- and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.gif" display="inline" overflow="scroll"><mml:mi>Q</mml:mi></mml:math>-functions
説明
We introduce two families of symmetric functions generalizing the factorial Schur $P$- and $Q$- functions due to Ivanov. We call them $K$-theoretic analogues of factorial Schur $P$- and $Q$- functions. We prove various combinatorial expressions for these functions, e.g. as a ratio of Pfaffians, and a sum over excited Young diagrams. As a geometric application, we show that these functions represent the Schubert classes in the $K$-theory of torus equivariant coherent sheaves on the maximal isotropic Grassmannians of symplectic and orthogonal types. This generalizes a corresponding result for the equivariant cohomology given by the authors. We also discuss a remarkable property enjoyed by these functions, which we call the $K$-theoretic $Q$-cancellation property. We prove that the $K$-theoretic $P$-functions form a (formal) basis of the ring of functions with the $K$-theoretic $Q$-cancellation property.
Final version
収録刊行物
-
- Advances in Mathematics
-
Advances in Mathematics 243 22-66, 2013-08
Elsevier BV
- Tweet
キーワード
- K-Theory and Homology (math.KT)
- 05E05 (Primary) 14M15, 19L47 (Secondary)
- Mathematics - Algebraic Geometry
- Mathematics - K-Theory and Homology
- FOS: Mathematics
- Mathematics - Combinatorics
- Combinatorics (math.CO)
- Representation Theory (math.RT)
- Algebraic Geometry (math.AG)
- Mathematics - Representation Theory
詳細情報 詳細情報について
-
- CRID
- 1360848656877135232
-
- ISSN
- 00018708
-
- 資料種別
- journal article
-
- データソース種別
-
- Crossref
- KAKEN
- OpenAIRE