Microarcsecond Astrometry with MCAO Using a Diffractive Mask

Search this article

Description

<jats:title>Abstract</jats:title><jats:p>We present a new ground-based technique to detect or follow-up long-period, potentially habitable exoplanets via precise relative astrometry of host stars using Multi-Conjugate Adaptive Optics (MCAO) on 8 meter telescopes equipped with diffractive masks. MCAO improves relative astrometry both by cancellation of high-altitude atmospheric layers, which induce dynamic focal-plane distortions, and the improvement of centroiding precision with sharper PSFs. However, mass determination of habitable exoplanets requires multi-year reference grid stability of ~1–10 μas or nanometer-level stability on the long-term average of out-of-pupil phase errors, which is difficult to achieve with MCAO (e.g., Meyer <jats:italic>et al</jats:italic>. 2011). The diffractive pupil technique calibrates dynamic distortion via extended diffraction spikes generated by a dotted primary mirror, which are referenced against a grid of background stars (Guyon <jats:italic>et al</jats:italic>. 2012). The diffractive grid provides three benefits to relative astrometry: (1) increased dynamic range, permitting observation of <jats:italic>V</jats:italic> < 10 stars without saturation; (2) calibration of dynamic distortion; and (3) a spectrum of the target star, which can be used to calibrate the magnitude of differential atmospheric refraction to the microarcsecond level. A diffractive 8-meter telescope with diffraction-limited MCAO in K-band reaches < 3–5 μas relative astrometric error per coordinate perpendicular to the zenith vector in one hour on a bright target star in fields of moderate stellar density (~10–40 stars arcmin<jats:sup>−2</jats:sup>). We present preliminary on-sky results of a test of the diffractive mask on the Nickel telescope at Lick Observatory.</jats:p>

Journal

References(14)*help

See more

Related Projects

See more

Details 詳細情報について

Report a problem

Back to top