- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Effective interaction between small unilamellar vesicles as probed by coarse-grained molecular dynamics simulations
-
- Wataru Shinoda
- National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan
-
- Michael L. Klein
- Institute of Computational Molecular Sciences, Temple University, 1900 N. 12 th Street, Philadelphia, PA 19122, USA
Search this article
Description
<jats:title>Abstract</jats:title> <jats:p>A series of molecular dynamics (MD) simulations has been undertaken to investigate the effective interaction between vesicles including PC (phosphatidylcholine) and PE (phosphatidylethanolamine) lipids using the Shinoda–DeVane–Klein coarse-grained force field. No signatures of fusion were detected during MD simulations employing two apposed unilamellar vesicles, each composed of 1512 lipid molecules. Association free energy of the two stable vesicles depends on the lipid composition. The two PC vesicles exhibit a purely repulsive interaction with each other, whereas two PE vesicles show a free energy gain at the contact. A mixed PC/PE (1:1) vesicle shows a higher flexibility having a lower energy barrier on the deformation, which is caused by lipid sorting within each leaflet of the membranes. With a preformed channel or stalk between proximal membranes, PE molecules contribute to stabilize the stalk. The results suggest that the lipid components forming the membrane with a negative spontaneous curvature contribute to stabilize the stalk between two vesicles in contact.</jats:p>
Journal
-
- Pure and Applied Chemistry
-
Pure and Applied Chemistry 86 (2), 215-222, 2014-01-25
Walter de Gruyter GmbH
- Tweet
Details 詳細情報について
-
- CRID
- 1360848662791096064
-
- ISSN
- 13653075
- 00334545
-
- Article Type
- journal article
-
- Data Source
-
- Crossref
- KAKEN
- OpenAIRE