Better local hidden variable models for two-qubit Werner states and an upper bound on the Grothendieck constant<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>K</mml:mi><mml:mi>G</mml:mi></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mn>3</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math>

  • Flavien Hirsch
    Groupe de Physique Appliquée, Université de Genève, CH-1211 Genève, Switzerland
  • Marco Túlio Quintino
    Groupe de Physique Appliquée, Université de Genève, CH-1211 Genève, Switzerland
  • Tamás Vértesi
    Institute for Nuclear Research, Hungarian Academy of Sciences, H-4001 Debrecen, P.O. Box 51, Hungary
  • Miguel Navascués
    Institute for Quantum Optics and Quantum Information (IQOQI), Boltzmangasse 3, 1090 Vienna, Austria
  • Nicolas Brunner
    Groupe de Physique Appliquée, Université de Genève, CH-1211 Genève, Switzerland

説明

<jats:p>We consider the problem of reproducing the correlations obtained by arbitrary local projective measurements on the two-qubit Werner state<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>ρ</mml:mi><mml:mo>=</mml:mo><mml:mi>v</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:msub><mml:mi>ψ</mml:mi><mml:mo>−</mml:mo></mml:msub><mml:mo fence="false" stretchy="false">⟩</mml:mo><mml:mo fence="false" stretchy="false">⟨</mml:mo><mml:msub><mml:mi>ψ</mml:mi><mml:mo>−</mml:mo></mml:msub><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mo>+</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>v</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mfrac><mml:mn>1</mml:mn><mml:mn>4</mml:mn></mml:mfrac></mml:math>via a local hidden variable (LHV) model, where<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:msub><mml:mi>ψ</mml:mi><mml:mo>−</mml:mo></mml:msub><mml:mo fence="false" stretchy="false">⟩</mml:mo></mml:math>denotes the singlet state. We show analytically that these correlations are local for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>v</mml:mi><mml:mo>=</mml:mo><mml:mn>999</mml:mn><mml:mo>×</mml:mo><mml:mn>689</mml:mn><mml:mo>×</mml:mo><mml:mrow class="MJX-TeXAtom-ORD"><mml:msup><mml:mn>10</mml:mn><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>−</mml:mo><mml:mn>6</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>cos</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>⁡</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mi>π</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>/</mml:mo></mml:mrow><mml:mn>50</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo>≃</mml:mo><mml:mn>0.6829</mml:mn></mml:math>. In turn, as this problem is closely related to a purely mathematical one formulated by Grothendieck, our result implies a new bound on the Grothendieck constant<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>K</mml:mi><mml:mi>G</mml:mi></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mn>3</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo>≤</mml:mo><mml:mn>1</mml:mn><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>/</mml:mo></mml:mrow><mml:mi>v</mml:mi><mml:mo>≃</mml:mo><mml:mn>1.4644</mml:mn></mml:math>. We also present a LHV model for reproducing the statistics of arbitrary POVMs on the Werner state for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>v</mml:mi><mml:mo>≃</mml:mo><mml:mn>0.4553</mml:mn></mml:math>. The techniques we develop can be adapted to construct LHV models for other entangled states, as well as bounding other Grothendieck constants.</jats:p>

収録刊行物

  • Quantum

    Quantum 1 3-, 2017-04-25

    Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

被引用文献 (1)*注記

もっと見る

参考文献 (28)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ