- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Infinite invariant density in a semi-Markov process with continuous state variables
Search this article
Description
We report on a fundamental role of a non-normalized formal steady state, i.e., an infinite invariant density, in a semi-Markov process where the state is determined by the inter-event time of successive renewals. The state describes certain observables found in models of anomalous diffusion, e.g., the velocity in the generalized L��vy walk model and the energy of a particle in the trap model. In our model, the inter-event-time distribution follows a fat-tailed distribution, which makes the state value more likely to be zero because long inter-event times imply small state values. We find two scaling laws describing the density for the state value, which accumulates in the vicinity of zero in the long-time limit. These laws provide universal behaviors in the accumulation process and give the exact expression of the infinite invariant density. Moreover, we provide two distributional limit theorems for time-averaged observables in these non-stationary processes. We show that the infinite invariant density plays an important role in determining the distribution of time averages.
16 pages, 7 figures
Journal
-
- Physical Review E
-
Physical Review E 101 (5), 052112-, 2020-05-12
American Physical Society (APS)