- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Automatic Translation feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Vitamin C versus Cancer: Ascorbic Acid Radical and Impairment of Mitochondrial Respiration?
-
- Rumiana Bakalova
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
-
- Zhivko Zhelev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
-
- Thomas Miller
- IC-MedTech Co., San Diego, CA, USA
-
- Ichio Aoki
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
-
- Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
Search this article
Description
<jats:p>Vitamin C as a cancer therapy has a controversial history. Much of the controversy arises from the lack of predictive biomarkers for stratification of patients, as well as a clear understanding of the mechanism of action and its multiple targets underlying the anticancer effect. Our review expands the analysis of cancer vulnerabilities for high-dose vitamin C, based on several facts, illustrating the cytotoxic potential of the ascorbyl free radical (AFR) via impairment of mitochondrial respiration and the mechanisms of its elimination in mammals by the membrane-bound NADH:cytochrome b5 oxidoreductase 3 (Cyb5R3). This enzyme catalyzes rapid conversion of AFR to ascorbate, as well as reduction of other redox-active compounds, using NADH as an electron donor. We propose that vitamin C can function in “protective mode” or “destructive mode” affecting cellular homeostasis, depending on the intracellular “steady-state” concentration of AFR and differential expression/activity of Cyb5R3 in cancerous and normal cells. Thus, a specific anticancer effect can be achieved at high doses of vitamin C therapy. The review is intended for a wide audience of readers—from students to specialists in the field.</jats:p>
Journal
-
- Oxidative Medicine and Cellular Longevity
-
Oxidative Medicine and Cellular Longevity 2020 1-12, 2020-01-11
Wiley