Enhancer evolution in chordates: Lessons from functional analyses of cephalochordate cis‐regulatory modules

  • Yuuri Yasuoka
    Laboratory for Comprehensive Genomic Analysis RIKEN Center for Integrative Medical Sciences Tsurumi‐ku Japan

抄録

<jats:title>Abstract</jats:title><jats:p>Chordates comprise three major groups, cephalochordates (amphioxus), tunicates (urochordates), and vertebrates. Since cephalochordates were the early branching group, comparisons between amphioxus and other chordates help us to speculate about ancestral chordates. Here, I summarize accumulating data from functional studies analyzing amphioxus cis‐regulatory modules (CRMs) in model systems of other chordate groups, such as mice, chickens, clawed frogs, fish, and ascidians. Conservatism and variability of CRM functions illustrate how gene regulatory networks have evolved in chordates. Amphioxus CRMs, which correspond to CRMs deeply conserved among animal phyla, govern reporter gene expression in conserved expression domains of the putative target gene in host animals. In addition, some CRMs located in similar genomic regions (intron, upstream, or downstream) also possess conserved activity, even though their sequences are divergent. These conservative CRM functions imply ancestral genomic structures and gene regulatory networks in chordates. However, interestingly, if expression patterns of amphioxus genes do not correspond to those of orthologs of experimental models, some amphioxus CRMs recapitulate expression patterns of amphioxus genes, but not those of endogenous genes, suggesting that these amphioxus CRMs are close to the ancestral states of chordate CRMs, while vertebrates/tunicates innovated new CRMs to reconstruct gene regulatory networks subsequent to the divergence of the cephalochordates. Alternatively, amphioxus CRMs may have secondarily lost ancestral CRM activity and evolved independently. These data help to solve fundamental questions of chordate evolution, such as neural crest cells, placodes, a forebrain/midbrain, and genome duplication. Experimental validation is crucial to verify CRM functions and evolution.</jats:p>

収録刊行物

被引用文献 (2)*注記

もっと見る

問題の指摘

ページトップへ