A note on splitting numbers for Galois covers and 𝜋₁-equivalent Zariski 𝑘-plets

Description

<p>In this paper, we introduce <italic>splitting numbers</italic> of subvarieties in a smooth complex variety for a Galois cover, and prove that the splitting numbers are invariant under certain homeomorphisms. In particular cases, we show that splitting numbers enable us to distinguish the topology of complex plane curves even if the fundamental groups of the complements of plane curves are isomorphic. Consequently, we prove that there are <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi 1"> <mml:semantics> <mml:msub> <mml:mi>π</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:annotation encoding="application/x-tex">\pi _1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-equivalent Zariski <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding="application/x-tex">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-plets for any integer <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k greater-than-or-equal-to 2"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">k\geq 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>

Journal

Citations (7)*help

See more

Report a problem

Back to top