A note on splitting numbers for Galois covers and 𝜋₁-equivalent Zariski 𝑘-plets
Description
<p>In this paper, we introduce <italic>splitting numbers</italic> of subvarieties in a smooth complex variety for a Galois cover, and prove that the splitting numbers are invariant under certain homeomorphisms. In particular cases, we show that splitting numbers enable us to distinguish the topology of complex plane curves even if the fundamental groups of the complements of plane curves are isomorphic. Consequently, we prove that there are <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi 1"> <mml:semantics> <mml:msub> <mml:mi>π</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:annotation encoding="application/x-tex">\pi _1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-equivalent Zariski <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding="application/x-tex">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-plets for any integer <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k greater-than-or-equal-to 2"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">k\geq 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>
Journal
-
- Proceedings of the American Mathematical Society
-
Proceedings of the American Mathematical Society 145 (3), 1009-1017, 2016-09-15
American Mathematical Society (AMS)
- Tweet
Details 詳細情報について
-
- CRID
- 1360855571129105920
-
- ISSN
- 10886826
- 00029939
-
- Data Source
-
- Crossref