- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
World model learning and inference
Search this article
Description
Understanding information processing in the brain-and creating general-purpose artificial intelligence-are long-standing aspirations of scientists and engineers worldwide. The distinctive features of human intelligence are high-level cognition and control in various interactions with the world including the self, which are not defined in advance and are vary over time. The challenge of building human-like intelligent machines, as well as progress in brain science and behavioural analyses, robotics, and their associated theoretical formalisations, speaks to the importance of the world-model learning and inference. In this article, after briefly surveying the history and challenges of internal model learning and probabilistic learning, we introduce the free energy principle, which provides a useful framework within which to consider neuronal computation and probabilistic world models. Next, we showcase examples of human behaviour and cognition explained under that principle. We then describe symbol emergence in the context of probabilistic modelling, as a topic at the frontiers of cognitive robotics. Lastly, we review recent progress in creating human-like intelligence by using novel probabilistic programming languages. The striking consensus that emerges from these studies is that probabilistic descriptions of learning and inference are powerful and effective ways to create human-like artificial intelligent machines and to understand intelligence in the context of how humans interact with their world.
Journal
-
- Neural Networks
-
Neural Networks 144 573-590, 2021-12
Elsevier BV
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1360857593648239488
-
- HANDLE
- 1721.1/150396
-
- ISSN
- 08936080
-
- PubMed
- 34634605
-
- Article Type
- journal article
-
- Data Source
-
- Crossref
- KAKEN
- OpenAIRE