Ezrin and Radixin Differentially Modulate Cell Surface Expression of Programmed Death Ligand-1 in Human Pancreatic Ductal Adenocarcinoma KP-2 Cells

抄録

<jats:p>Immune checkpoint blockade (ICB) therapies, such as immune checkpoint inhibitors against programmed death ligand-1 (PD-L1), have not been successful in treating patients with pancreatic ductal adenocarcinoma (PDAC). Despite the critical role of PD-L1 in various types of cancers, the regulatory mechanism of PD-L1 expression on the cell surface of PDAC is poorly understood. Therefore, uncovering potential modulators of cell surface localisation of PD-L1 may provide a new strategy to improve ICB therapy in patients with PDAC. Here, we examined the role of ezrin/radixin/moesin (ERM) family scaffold proteins that crosslink transmembrane proteins with the actin cytoskeleton in the surface localisation of PD-L1 in KP-2 cells, a human PDAC cell line. Our results demonstrated the abundant protein expression of PD-L1, ezrin, and radixin, but not moesin, as well as their colocalisation in the plasma membrane. Interestingly, immunoprecipitation analysis detected the molecular interaction of PD-L1 with ezrin and radixin. Moreover, gene silencing of ezrin moderately decreased the mRNA and cell surface expression of PD-L1, while that of radixin greatly decreased the surface expression of PD-L1 without altering the mRNA levels. Thus, radixin and ezrin differentially modulate the cell surface localisation of PD-L1 in KP-2 cells, highlighting a potential therapeutic target to improve the current ICB therapy in PDAC.</jats:p>

収録刊行物

  • Immuno

    Immuno 2 (1), 68-84, 2022-01-07

    MDPI AG

被引用文献 (4)*注記

もっと見る

参考文献 (56)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ