In vivo Perturb-Seq reveals neuronal and glial abnormalities associated with autism risk genes

  • Xin Jin
    Society of Fellows, Harvard University, Cambridge, MA, USA.
  • Sean K. Simmons
    Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Amy Guo
    Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Ashwin S. Shetty
    Department of Stem Cell and Regenerative Biology, Harvard University, MA, USA.
  • Michelle Ko
    Department of Stem Cell and Regenerative Biology, Harvard University, MA, USA.
  • Lan Nguyen
    Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Vahbiz Jokhi
    Department of Stem Cell and Regenerative Biology, Harvard University, MA, USA.
  • Elise Robinson
    Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Paul Oyler
    Department of Stem Cell and Regenerative Biology, Harvard University, MA, USA.
  • Nathan Curry
    Department of Stem Cell and Regenerative Biology, Harvard University, MA, USA.
  • Giulio Deangeli
    Department of Stem Cell and Regenerative Biology, Harvard University, MA, USA.
  • Simona Lodato
    Department of Biomedical Sciences and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Clinical and Research Center, Humanitas University, Milan, Italy.
  • Joshua Z. Levin
    Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Aviv Regev
    Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Feng Zhang
    Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Paola Arlotta
    Department of Stem Cell and Regenerative Biology, Harvard University, MA, USA.

Description

<jats:title>An in vivo analysis of autism risk genes</jats:title> <jats:p> CRISPR targeting in vivo, especially in mammals, can be difficult and time consuming when attempting to determine the effects of a single gene. However, such studies may be required to identify pathological gene variants with effects in specific cells along a developmental trajectory. To study the function of genes implicated in autism spectrum disorders (ASDs), Jin <jats:italic>et al.</jats:italic> applied a gene-editing and single-cell–sequencing system, Perturb-Seq, to knock out 35 ASD candidate genes in multiple mice embryos (see the Perspective by Treutlein and Camp). This method identified networks of gene expression in neuronal and glial cells that suggest new functions in ASD-related genes. </jats:p> <jats:p> <jats:italic>Science</jats:italic> , this issue p. <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" related-article-type="in-this-issue" xlink:href="10.1126/science.aaz6063">eaaz6063</jats:related-article> ; see also p. <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" issue="6520" page="1038" related-article-type="in-this-issue" vol="370" xlink:href="10.1126/science.abf3661">1038</jats:related-article> </jats:p>

Journal

  • Science

    Science 370 (6520), 2020-11-27

    American Association for the Advancement of Science (AAAS)

Citations (1)*help

See more

Report a problem

Back to top