2D IR provides evidence for mobile water molecules in β-amyloid fibrils

  • Yung Sam Kim
    Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323; and
  • Liu Liu
    Departments of Pharmacology, Biochemistry and Biophysics, and Medicine/Infectious Diseases, University of Pennsylvania School of Medicine, 295 John Morgan Building, 3630 Hamilton Walk, Philadelphia, PA 19104-6084
  • Paul H. Axelsen
    Departments of Pharmacology, Biochemistry and Biophysics, and Medicine/Infectious Diseases, University of Pennsylvania School of Medicine, 295 John Morgan Building, 3630 Hamilton Walk, Philadelphia, PA 19104-6084
  • Robin M. Hochstrasser
    Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323; and

説明

<jats:p> The motion of water molecules close to amide groups causes their vibrational frequencies to vary rapidly in time. These variations are uniquely sensed by 2-dimensional infrared spectroscopy (2D IR). Here, it is proposed from 2-dimensional experiments on fibrils of amyloid β (Aβ)40 that there are water molecules in the fibrils. The spatial locations of the water (D <jats:sub>2</jats:sub> O) were inferred from the responses of 18 amide modes of Aβ40 labeled with <jats:sup>13</jats:sup> C = <jats:sup>18</jats:sup> O. Fast frequency variations were found for residues L17 and V18 and for the apposed residues L34 and V36, suggesting cavities or channels containing mobile water molecules can form between the 2 sheets. Spectroscopic analysis showed that there are 1.2 water molecules per strand in the fibrils. The <jats:sup>13</jats:sup> C = <jats:sup>18</jats:sup> O substitution of 1 residue per strand creates a linear array of isotopologs along the fibril axis that manifests clearly identifiable vibrational transitions. Here, it is shown from the distributions of amide-I′ vibrational frequencies that the regularity of these chains is strongly residue dependent and in most cases the distorted regions are also those associated with the putative mobile water molecules. It is proposed that Aβ40 fibrils contain structurally significant mobile water molecules within the intersheet region. </jats:p>

収録刊行物

被引用文献 (1)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ