Probing the Microstructure of Methylammonium Lead Iodide Perovskite Solar Cells

  • Tobias Leonhard
    Light Technology Institute Karlsruhe Institute of Technology (KIT) Engesserstrasse 13 76131 Karlsruhe Germany
  • Alexander D. Schulz
    Light Technology Institute Karlsruhe Institute of Technology (KIT) Engesserstrasse 13 76131 Karlsruhe Germany
  • Holger Röhm
    Light Technology Institute Karlsruhe Institute of Technology (KIT) Engesserstrasse 13 76131 Karlsruhe Germany
  • Susanne Wagner
    Institute for Applied Materials – Ceramic Materials and Technologies (IAM) Karlsruhe Institute of Technology (KIT) Haid‐und‐Neu‐Strasse 7 76131 Karlsruhe Germany
  • Fabian J. Altermann
    Institute for Applied Materials – Ceramic Materials and Technologies (IAM) Karlsruhe Institute of Technology (KIT) Haid‐und‐Neu‐Strasse 7 76131 Karlsruhe Germany
  • Wolfgang Rheinheimer
    Institute for Applied Materials – Ceramic Materials and Technologies (IAM) Karlsruhe Institute of Technology (KIT) Haid‐und‐Neu‐Strasse 7 76131 Karlsruhe Germany
  • Michael J. Hoffmann
    Material Research Center for Energy Systems (MZE) Karlsruhe Institute of Technology (KIT) Strasse am Forum 7 76131 Karlsruhe Germany
  • Alexander Colsmann
    Light Technology Institute Karlsruhe Institute of Technology (KIT) Engesserstrasse 13 76131 Karlsruhe Germany

Description

<jats:sec><jats:label/><jats:p>The microstructure of absorber layers is pivotally important for all thin‐film solar technologies. Using electron backscattered diffraction (EBSD), the crystal orientation in methylammonium lead iodide thin films with submicrometer resolution is reported. For the vast majority of (110) oriented grains, the <jats:italic>c</jats:italic>‐axis of the perovskite unit cell is oriented in‐plane. Although some adjacent grains exhibit the same in‐plane horizontal orientation of the <jats:italic>c</jats:italic>‐axis, no universal horizontal orientation of the <jats:italic>c</jats:italic>‐axis within the sample plane exists. The (110) crystal orientation correlates with an in‐plane orientation of the ferroelectric polarization as investigated by vertical and lateral piezoresponse force microscopy (PFM). The individual grains with different crystal orientations that exhibit different ferroelectric patterns and surface potentials are identified. The strong correlation between crystal orientation and ferroelectric polarization allows conclusions to be drawn about the microstructure from PFM measurements and, likewise, the ferroelectric polarization to be derived from crystallographic observations by EBSD.</jats:p></jats:sec>

Journal

Citations (1)*help

See more

Report a problem

Back to top