AlScN-based MEMS magnetoelectric sensor

  • Jingxiang Su
    Fraunhofer Institute for Silicon Technology ISIT 1 , Fraunhoferstrasse 1, 25524 Itzehoe, Germany
  • Florian Niekiel
    Fraunhofer Institute for Silicon Technology ISIT 1 , Fraunhoferstrasse 1, 25524 Itzehoe, Germany
  • Simon Fichtner
    Fraunhofer Institute for Silicon Technology ISIT 1 , Fraunhoferstrasse 1, 25524 Itzehoe, Germany
  • Lars Thormaehlen
    Institute for Material Science, Kiel University 2 , Kaiserstasse 2, 24143 Kiel, Germany
  • Christine Kirchhof
    Institute for Material Science, Kiel University 2 , Kaiserstasse 2, 24143 Kiel, Germany
  • Dirk Meyners
    Institute for Material Science, Kiel University 2 , Kaiserstasse 2, 24143 Kiel, Germany
  • Eckhard Quandt
    Institute for Material Science, Kiel University 2 , Kaiserstasse 2, 24143 Kiel, Germany
  • Bernhard Wagner
    Fraunhofer Institute for Silicon Technology ISIT 1 , Fraunhoferstrasse 1, 25524 Itzehoe, Germany
  • Fabian Lofink
    Fraunhofer Institute for Silicon Technology ISIT 1 , Fraunhoferstrasse 1, 25524 Itzehoe, Germany

この論文をさがす

説明

<jats:p>MEMS sensors based on magnetoelectric composites have attracted great interest due to their capability to detect weak magnetic fields, showing high potential in applications like biomagnetic field detection and magnetic particle imaging. This paper reports on a scandium aluminum nitride thin film-based MEMS magnetoelectric sensor. The sensor consists of a polycrystalline silicon cantilever with a size of 1000 μm × 200 μm covered by a piezoelectric Al0.73Sc0.27N and a magnetostrictive (Fe90Co10)78Si12B10 thin film. The performance of the presented sensor is investigated based on the magnetoelectric (ME) voltage coefficient, voltage noise density, and limit of detection and compared to the characteristics of the aluminum nitride thin film-based ME sensor with the same layout and fabrication technology. By using an Al0.73Sc0.27N thin film with a higher piezoelectric activity instead of AlN in MEMS ME sensors, the ME voltage coefficient of (1334 ± 84) V/cm Oe in resonance is almost double, thereby lowering the requirements for the electronic system. The limit of detection of (60 ± 2) pT/Hz0.5 remains unchanged due to the dominant thermomechanical noise in resonance.</jats:p>

収録刊行物

被引用文献 (2)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ