Correlating chemical and electronic states from quantitative photoemission electron microscopy of transition-metal dichalcogenide heterostructures

  • Olivier Renault
    Univ. Grenoble Alpes, CEA 1 , Leti, F-38000 Grenoble, France
  • Hokwon Kim
    Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL) 2 , CH-1015 Lausanne, Switzerland
  • Dumitru Dumcenco
    Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL) 2 , CH-1015 Lausanne, Switzerland
  • Dmitrii Unuchek
    Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL) 2 , CH-1015 Lausanne, Switzerland
  • Nicolas Chevalier
    Univ. Grenoble Alpes, CEA 1 , Leti, F-38000 Grenoble, France
  • Maxime Gay
    Univ. Grenoble Alpes, CEA 1 , Leti, F-38000 Grenoble, France
  • Andras Kis
    Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL) 2 , CH-1015 Lausanne, Switzerland
  • Neal Fairley
    Casa Software Ltd 3 , Bay House, 5 Grosvenor Terrace, Teignmouth, Devon TQ14 8NE, United Kingdom

抄録

<jats:p>Vertical heterostructures of MoS2 and WSe2 layers are studied by spectroscopic photoemission electron microscopy as an effective technique for correlating chemical and electronic states at the micrometer scale. Element-specific, surface-sensitive images recorded at high lateral and energy resolution from core-level photoelectrons using different laboratory excitation sources are postprocessed to obtain laterally resolved maps of elemental composition and energy shifts in the Mo3d spectra of a few hundred meV. For monolayer MoS2, the method reveals substrate-dependent charge transfer properties within the narrow energy range of 360 meV, with MoS2 becoming more n-type after transfer onto WSe2. The band structure data from momentum microscopy taken over the same areas confirm the charge transfer from WSe2 to MoS2 by the shift of the K-bands away from the Fermi level and illustrates the layer-specific contributions to the electronic band structure of the heterostructure. From work function mapping, the reconstructed energy-level diagram reveals a type II heterostructure but with a very small conduction-band offset.</jats:p>

収録刊行物

被引用文献 (1)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ