- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Spatial Scattering Radiation to the Radiological Technologist during Medical Mobile Radiography
-
- Kazuki Otomo
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
-
- Yohei Inaba
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
-
- Keisuke Abe
- Department of Radiology, Tohoku University Hospital, 1-1 Seiryo, Aoba-ku, Sendai 980-8574, Japan
-
- Mana Onodera
- Department of Radiology, Tohoku University Hospital, 1-1 Seiryo, Aoba-ku, Sendai 980-8574, Japan
-
- Tomohiro Suzuki
- Department of Radiology, Tohoku University Hospital, 1-1 Seiryo, Aoba-ku, Sendai 980-8574, Japan
-
- Masahiro Sota
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
-
- Yoshihiro Haga
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
-
- Masatoshi Suzuki
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
-
- Masayuki Zuguchi
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
-
- Koichi Chida
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
Description
<jats:p>Mobile radiography allows for the diagnostic imaging of patients who cannot move to the X-ray examination room. Therefore, mobile X-ray equipment is useful for patients who have difficulty with movement. However, staff are exposed to scattered radiation from the patient, and they can receive potentially harmful radiation doses during radiography. We estimated occupational exposure during mobile radiography using phantom measurements. Scattered radiation distribution during mobile radiography was investigated using a radiation survey meter. The efficacy of radiation-reducing methods for mobile radiography was also evaluated. The dose decreased as the distance from the X-ray center increased. When the distance was more than 150 cm, the dose decreased to less than 1 μSv. It is extremely important for radiological technologists (RTs) to maintain a sufficient distance from the patient to reduce radiation exposure. The spatial dose at eye-lens height increases when the bed height is high, and when the RT is short in stature and abdominal imaging is performed. Maintaining sufficient distance from the patient is also particularly effective in limiting radiation exposure of the eye lens. Our results suggest that the doses of radiation received by staff during mobile radiography are not significant when appropriate radiation protection is used. To reduce exposure, it is important to maintain a sufficient distance from the patient. Therefore, RTs should bear this is mind during mobile radiography.</jats:p>
Journal
-
- Bioengineering
-
Bioengineering 10 (2), 259-, 2023-02-16
MDPI AG