Complete classification of Friedmann–Lemaître–Robertson–Walker solutions with linear equation of state: parallelly propagated curvature singularities for general geodesics

Abstract

<jats:title>Abstract</jats:title> <jats:p>We completely classify the Friedmann–Lemaître–Robertson–Walker solutions with spatial curvature <jats:italic>K</jats:italic> = 0, ±1 for perfect fluids with linear equation of state <jats:italic>p</jats:italic> = <jats:italic>wρ</jats:italic>, where <jats:italic>ρ</jats:italic> and <jats:italic>p</jats:italic> are the energy density and pressure, without assuming any energy conditions. We extend our previous work to include all geodesics and parallelly propagated (p.p.) curvature singularities, showing that no non-null geodesic emanates from or terminates at the null portion of conformal infinity and that the initial singularity for <jats:italic>K</jats:italic> = 0, −1 and −5/3 < <jats:italic>w</jats:italic> < −1 is a null non-scalar polynomial curvature singularity. We thus obtain the Penrose diagrams for all possible cases and identify <jats:italic>w</jats:italic> = −5/3 as a critical value for both the future big-rip singularity and the past null conformal boundary.</jats:p>

Journal

Citations (1)*help

See more

References(23)*help

See more

Related Projects

See more

Report a problem

Back to top