Enabling high repetition rate nonlinear THz science with a kilowatt-class sub-100 fs laser source

Description

<jats:p>Manipulating the atomic and electronic structure of matter with strong terahertz (THz) fields while probing the response with ultrafast pulses at x-ray free electron lasers (FELs) has offered unique insights into a multitude of physical phenomena in solid state and atomic physics. Recent upgrades of x-ray FEL facilities are pushing to much higher repetition rates, enabling unprecedented signal-to-noise ratio for pump probe experiments. This requires the development of suitable THz pump sources that are able to deliver intense pulses at compatible repetition rates. Here we present a high-power laser-driven THz source based on optical rectification in LiNbO<jats:sub>3</jats:sub> using tilted pulse front pumping. Our source is driven by a kilowatt-level Yb:YAG amplifier system operating at 100 kHz repetition rate and employing nonlinear spectral broadening and recompression to achieve sub-100 fs pulses with pulse energies up to 7 mJ that are necessary for high THz conversion efficiency and peak field strength. We demonstrate a maximum of 144 mW average THz power (1.44 <jats:italic>μ</jats:italic>J pulse energy), consisting of single-cycle pulses centered at 0.6 THz with a peak electric field strength exceeding 150 kV/cm. These high field pulses open up a range of possibilities for nonlinear time-resolved THz experiments at unprecedented rates.</jats:p>

Journal

  • Optics Express

    Optics Express 28 (11), 16951-, 2020-05-21

    Optica Publishing Group

Citations (1)*help

See more

Report a problem

Back to top