Integrating UAV-SfM and Airborne Lidar Point Cloud Data to Plantation Forest Feature Extraction

DOI Web Site 被引用文献1件 オープンアクセス
  • Tatsuki Yoshii
    Department of Forestry and Natural Resources, National Chiayi University, Chiayi 600355, Taiwan
  • Naoto Matsumura
    Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu City 514-8507, Mie, Japan
  • Chinsu Lin
    Department of Forestry and Natural Resources, National Chiayi University, Chiayi 600355, Taiwan

説明

<jats:p>A low-cost but accurate remote-sensing-based forest-monitoring tool is necessary for regularly inventorying tree-level parameters and stand-level attributes to achieve sustainable management of timber production forests. Lidar technology is precise for multi-temporal data collection but expensive. A low-cost UAV-based optical sensing method is an economical and flexible alternative for collecting high-resolution images for generating point cloud data and orthophotos for mapping but lacks height accuracy. This study proposes a protocol of integrating a UAV equipped without an RTK instrument and airborne lidar sensors (ALS) for characterizing tree parameters and stand attributes for use in plantation forest management. The proposed method primarily relies on the ALS-based digital elevation model data (ALS-DEM), UAV-based structure-from-motion technique generated digital surface model data (UAV-SfM-DSM), and their derivative canopy height model data (UAV-SfM-CHM). Following traditional forest inventory approaches, a few middle-aged and mature stands of Hinoki cypress (Chamaecyparis obtusa) plantation forests were used to investigate the performance of characterizing forest parameters via the canopy height model. Results show that the proposed method can improve UAV-SfM point cloud referencing transformation accuracy. With the derived CHM data, this method can estimate tree height with an RMSE ranging from 0.43 m to 1.65 m, equivalent to a PRMSE of 2.40–7.84%. The tree height estimates between UAV-based and ALS-based approaches are highly correlated (R2 = 0.98, p < 0.0001), similarly, the height annual growth rate (HAGR) is also significantly correlated (R2 = 0.78, p < 0.0001). The percentage HAGR of Hinoki trees behaves as an exponential decay function of the tree height over an 8-year management period. The stand-level parameters stand density, stand volume stocks, stand basal area, and relative spacing are with an error rate of less than 20% for both UAV-based and ALS-based approaches. Intensive management with regular thinning helps the plantation forests retain a clear crown shape feature, therefore, benefitting tree segmentation for deriving tree parameters and stand attributes.</jats:p>

収録刊行物

被引用文献 (1)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ