Evidence of Tri-Exponential Decay for Liver Intravoxel Incoherent Motion MRI: A Review of Published Results and Limitations

  • Olivier Chevallier
    Image-Guided Therapy Center, Department of Vascular and Interventional Radiology, François-Mitterrand University Hospital, 14 Rue Paul Gaffarel, BP 77908, 21079 Dijon, France
  • Yì Xiáng J. Wáng
    Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong, China
  • Kévin Guillen
    Image-Guided Therapy Center, Department of Vascular and Interventional Radiology, François-Mitterrand University Hospital, 14 Rue Paul Gaffarel, BP 77908, 21079 Dijon, France
  • Julie Pellegrinelli
    Image-Guided Therapy Center, Department of Vascular and Interventional Radiology, François-Mitterrand University Hospital, 14 Rue Paul Gaffarel, BP 77908, 21079 Dijon, France
  • Jean-Pierre Cercueil
    Image-Guided Therapy Center, Department of Vascular and Interventional Radiology, François-Mitterrand University Hospital, 14 Rue Paul Gaffarel, BP 77908, 21079 Dijon, France
  • Romaric Loffroy
    Image-Guided Therapy Center, Department of Vascular and Interventional Radiology, François-Mitterrand University Hospital, 14 Rue Paul Gaffarel, BP 77908, 21079 Dijon, France

説明

<jats:p>Diffusion weighted imaging (DWI) and intravoxel incoherent motion (IVIM) have been explored to assess liver tumors and diffused liver diseases. IVIM reflects the microscopic translational motions that occur in voxels in magnetic resonance (MR) DWI. In biologic tissues, molecular diffusion of water and microcirculation of blood in the capillary network can be assessed using IVIM DWI. The most commonly applied model to describe the DWI signal is a bi-exponential model, with a slow compartment of diffusion linked to pure molecular diffusion (represented by the coefficient Dslow), and a fast compartment of diffusion, related to microperfusion (represented by the coefficient Dfast). However, high variance in Dfast estimates has been consistently shown in literature for liver IVIM, restricting its application in clinical practice. This variation could be explained by the presence of another very fast compartment of diffusion in the liver. Therefore, a tri-exponential model would be more suitable to describe the DWI signal. This article reviews the published evidence of the existence of this additional very fast diffusion compartment and discusses the performance and limitations of the tri-exponential model for liver IVIM in current clinical settings.</jats:p>

収録刊行物

  • Diagnostics

    Diagnostics 11 (2), 379-, 2021-02-23

    MDPI AG

被引用文献 (1)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ