Temperature affects growth, geosmin/2-methylisoborneol production, and gene expression in two cyanobacterial species
Description
Cyanobacterial blooms accompanied by taste and odor (TO) compounds affect the recreational function and safe use of drinking water. Geosmin and 2-methylisoborneol (2-MIB) are the most common TO compounds. In this study, we investigated the effect of temperature on geosmin and 2-MIB production in Dolichospermum smithii and Pseudanabaena foetida var. intermedia. More specifically, transcription of one geosmin synthase gene (geoA) and two 2-MIB synthase genes (mtf and mtc) was explored. Of the three temperatures (15, 25, and 35 °C) tested, the maximum Chl-a content was determined at 25 °C in both D. smithii and P. foetida var. intermedia. The maximum total geosmin concentration (19.82 μg/L) produced by D. smithii was detected at 25 °C. The total 2-MIB concentration (82.5 μg/L) produced by P. foetida var. intermedia was the highest at 35 °C. Besides, the lowest Chl-a content and minimum geosmin/2-MIB concentration were observed at 15 °C. There was a good positive correlation between geosmin/2-MIB concentration and Chl-a content. The expression levels of the geoA, mtf, and mtc genes at 15 °C were significantly higher than those at 25 and 35 °C. The transcription of the mtf and mtc genes in P. foetida var. intermedia was higher at 35 °C than at 25 °C. The results highlight unfavorable temperature can increase the potential of geosmin/2-MIB synthesis from the gene expression level in cyanobacteria. This study could provide basic knowledge of geosmin/2-MIB production by cyanobacteria for better understanding and management of TO problems in drinking water.
Journal
-
- Environmental Science and Pollution Research
-
Environmental Science and Pollution Research 29 (8), 12017-12026, 2021-09-23
Springer Science and Business Media LLC