- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora
Description
<jats:title>Abstract</jats:title><jats:p>The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/<jats:italic>c</jats:italic> charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1<jats:inline-formula><jats:alternatives><jats:tex-math>$$\pm 0.6$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo>±</mml:mo> <mml:mn>0.6</mml:mn> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula>% and 84.1<jats:inline-formula><jats:alternatives><jats:tex-math>$$\pm 0.6$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo>±</mml:mo> <mml:mn>0.6</mml:mn> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula>%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation.</jats:p>
Journal
-
- The European Physical Journal C
-
The European Physical Journal C 83 (7), 2023-07-14
Springer Science and Business Media LLC
- Tweet
Details 詳細情報について
-
- CRID
- 1360865814734920064
-
- ISSN
- 14346052
-
- Article Type
- journal article
-
- Data Source
-
- Crossref
- KAKEN