- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Automatic Translation feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Efficiency enhancement of CIGS solar cell by cubic silicon carbide as prospective buffer layer
Search this article
Description
Abstract Cubic Silicon Carbide (3C-SiC) can be a potential photovoltaic material for thin-film solar cells because of its wide bandgap and non-toxic nature. In this work, we present 3C-SiC as an alternative to the conventional CdS buffer layer and investigate the performance of the proposed 3C-SiC/CIGS cell structure using solar simulator SCAPS-1D. The simulation starts with the optimization of 3C-SiC buffer layer thickness followed by the study of conduction band offsets (CBO) impact on the photovoltaic performance parameters. The highest obtained efficiency is 25.51% (Voc = 0.94 V, Jsc = 31.46 mA/cm2) at CBO, ΔEc = 0.91 eV with the optimized buffer thickness. The linear extrapolation study of Voc as a function of temperature yields the activation energy which tells the existence of interface recombination centres. Next, the inclusion of the acceptor defect state at the 3C-SiC/CIGS interface determines the maximum acceptable defect density of the proposed cell structure. Afterward, the thermal stability through temperature study is performed and compared to the traditional CdS/CIGS structure. The results provided here give few paramount indications that lead to a highly efficient CIGS solar cell with a 3C-SiC buffer layer.
Journal
-
- Solar Energy
-
Solar Energy 224 271-278, 2021-08
Elsevier BV
- Tweet
Details 詳細情報について
-
- CRID
- 1360865819391129472
-
- ISSN
- 0038092X
-
- Data Source
-
- Crossref
- OpenAIRE