- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Flexible terahertz imaging systems with single-walled carbon nanotube films
Search this article
Description
Abstract Sensing systems that can ensure product reliability in a broad range of environments are urgently required for broader application of the internet of things. Imaging technologies based on the terahertz (THz) frequency are considered a promising solution to the challenge of inspecting industrial products in a nondestructive manner. However, current THz imaging systems require bulky and complicated components that hamper their practical application. Therefore, we herein present flexible THz imaging systems based on single-walled carbon nanotube (CNT) films that leverage the material’s advantages of mechanical strength, broad THz absorption, high thermoelectric power, and flexibility. This work investigates and optimizes the physical parameters that govern the detection sensitivity of the proposed CNT THz detector, and then tests a flexible THz imaging system based on the optimization. These imaging systems can be used in a wide range of industrial sensing applications, including inline pharmaceutical quality screening, multi-view imaging, and portable THz imaging for nondestructive quality testing of industrial products, with no bulky measurement components.
Journal
-
- Carbon
-
Carbon 162 13-24, 2020-06
Elsevier BV
- Tweet
Details 詳細情報について
-
- CRID
- 1361131416615653760
-
- ISSN
- 00086223
-
- Article Type
- journal article
-
- Data Source
-
- Crossref
- KAKEN
- OpenAIRE