- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Strong postmidnight equatorial ionospheric anomaly observations during magnetically quiet periods
-
- Endawoke Yizengaw
- Institute of Geophysics and Planetary Physics University of California Los Angeles California USA
-
- Mark B. Moldwin
- Institute of Geophysics and Planetary Physics University of California Los Angeles California USA
-
- Yogeshwar Sahai
- Instituto de Pesquisa e Desenvolvimento Universidade do Vale do Paraíba, São José dos Campos Brazil
-
- Rodolfo de Jesus
- Instituto de Pesquisa e Desenvolvimento Universidade do Vale do Paraíba, São José dos Campos Brazil
Search this article
Description
<jats:p>We have examined the quiet time equatorial electrodynamics of the ionosphere in the postmidnight sector using satellite, GPS total electron content (TEC) and ionosonde data. ROCSAT‐1 vertical drift data are used to estimate the equatorial ionosphere electrodynamics, TOPEX altimeter and GPS TEC are used to obtain the density structure of the ionosphere. Ionosonde data measure the postmidnight <jats:italic>F</jats:italic> layer height as function of local time. We analyzed 4 years (2001–2004) of quiet time (<jats:italic>Kp</jats:italic> ≤ 3) observations in the postmidnight sector. We found that very strong equatorial ionospheric anomalies (EIAs) in the postmidnight (0100–0500 LT) sector during magnetically quiet periods are common and are capable of disrupting satellite communication and navigation systems. The coordinated multi‐instrument observations clearly demonstrate that these strong EIAs are not simply the EIAs observed in earlier local time sectors that have corotated into the postmidnight sector as has been suggested by previous studies. We demonstrate that they are triggered by a reversed vertically upward drift, which is suggested to be generated by thermospheric neutral wind through <jats:italic>F</jats:italic> region dynamo. This clearly demonstrates that the Earth's postmidnight ionosphere is dynamic even in magnetically quiet periods contrary to simple theoretical model predictions.</jats:p>
Journal
-
- Journal of Geophysical Research: Space Physics
-
Journal of Geophysical Research: Space Physics 114 (A12), 2009-12
American Geophysical Union (AGU)
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1361137043517996160
-
- ISSN
- 01480227
-
- Data Source
-
- Crossref