この論文をさがす
説明
<jats:title>Abstract</jats:title><jats:p>When analyzing data, outlying observations cause problems because they may strongly influence the result. Robust statistics aims at detecting the outliers by searching for the model fitted by the majority of the data. We present an overview of several robust methods and outlier detection tools. We discuss robust procedures for univariate, low‐dimensional, and high‐dimensional data such as estimation of location and scatter, linear regression, principal component analysis, and classification. © 2011 John Wiley & Sons, Inc. <jats:italic>WIREs Data Mining Knowl Discov</jats:italic> 2011 1 73‐79 DOI: 10.1002/widm.2</jats:p><jats:p>This article is categorized under: <jats:list list-type="explicit-label"> <jats:list-item><jats:p>Algorithmic Development > Biological Data Mining</jats:p></jats:list-item> <jats:list-item><jats:p>Algorithmic Development > Spatial and Temporal Data Mining</jats:p></jats:list-item> <jats:list-item><jats:p>Application Areas > Health Care</jats:p></jats:list-item> <jats:list-item><jats:p>Technologies > Structure Discovery and Clustering</jats:p></jats:list-item> </jats:list></jats:p>
収録刊行物
-
- WIREs Data Mining and Knowledge Discovery
-
WIREs Data Mining and Knowledge Discovery 1 (1), 73-79, 2011-01
Wiley
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1361137044557893632
-
- DOI
- 10.1002/widm.2
-
- ISSN
- 19424795
- 19424787
-
- データソース種別
-
- Crossref