Gibberellin Mobilizes Distinct DELLA-Dependent Transcriptomes to Regulate Seed Germination and Floral Development in Arabidopsis

  • Dongni Cao
    Functional Genomics Laboratory, Institute of Molecular and Cell Biology, Proteos, Singapore 138673
  • Hui Cheng
    Functional Genomics Laboratory, Institute of Molecular and Cell Biology, Proteos, Singapore 138673
  • Wei Wu
    Functional Genomics Laboratory, Institute of Molecular and Cell Biology, Proteos, Singapore 138673
  • Hui Meng Soo
    Functional Genomics Laboratory, Institute of Molecular and Cell Biology, Proteos, Singapore 138673
  • Jinrong Peng
    Functional Genomics Laboratory, Institute of Molecular and Cell Biology, Proteos, Singapore 138673

抄録

<jats:title>Abstract</jats:title> <jats:p>Severe Arabidopsis (Arabidopsis thaliana) gibberellin (GA)-deficient mutant ga1-3 fails to germinate and is impaired in floral organ development. In contrast, the ga1-3 gai-t6 rga-t2 rgl1-1 rgl2-1 mutant confers GA-independent seed germination and floral development. This fact suggests that GA-regulated transcriptomes for seed germination and floral development are DELLA dependent. However, it is currently not known if all GA-regulated genes are GA regulated in a DELLA-dependent fashion and if a similar set of DELLA-regulated genes is mobilized to repress both seed germination and floral development. Here, we compared the global gene expression patterns in the imbibed seeds and unopened flower buds of the ga1-3 mutant with that of the wild type and of the ga1-3 gai-t6 rga-t2 rgl1-1 rgl2-1 mutant. We found that about one-half of total GA-regulated genes are apparently regulated in a DELLA-dependent fashion, suggesting that there might be a DELLA-independent or -partially-dependent component of GA-dependent gene regulation. A cross-comparison based on gene identity revealed that the GA-regulated DELLA-dependent transcriptomes in the imbibed seeds and flower buds are distinct from each other. Detailed ontology analysis showed that, on one hand, DELLAs differentially regulate the expression of different individual members of a gene family to run similar biochemical pathways in seeds and flower. Meanwhile, DELLAs control many functionally different genes to run specific pathways in seeds or flower buds to mark the two different developmental processes. Our data shown here not only confirm many previous reports but also single out some novel aspects of DELLA functions that are instructive to our future research.</jats:p>

収録刊行物

  • Plant Physiology

    Plant Physiology 142 (2), 509-525, 2006-08-18

    Oxford University Press (OUP)

被引用文献 (2)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ