LYK4, a Lysin Motif Receptor-Like Kinase, Is Important for Chitin Signaling and Plant Innate Immunity in Arabidopsis

  • Jinrong Wan
    Division of Plant Sciences, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center (J.W., K.T., X.-C.Z., G.H.S., L.B., T.H.N.N., G.S.), and Division of Biochemistry (G.S.), University of Missouri, Columbia, Missouri 65211
  • Kiwamu Tanaka
    Division of Plant Sciences, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center (J.W., K.T., X.-C.Z., G.H.S., L.B., T.H.N.N., G.S.), and Division of Biochemistry (G.S.), University of Missouri, Columbia, Missouri 65211
  • Xue-Cheng Zhang
    Division of Plant Sciences, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center (J.W., K.T., X.-C.Z., G.H.S., L.B., T.H.N.N., G.S.), and Division of Biochemistry (G.S.), University of Missouri, Columbia, Missouri 65211
  • Geon Hui Son
    Division of Plant Sciences, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center (J.W., K.T., X.-C.Z., G.H.S., L.B., T.H.N.N., G.S.), and Division of Biochemistry (G.S.), University of Missouri, Columbia, Missouri 65211
  • Laurent Brechenmacher
    Division of Plant Sciences, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center (J.W., K.T., X.-C.Z., G.H.S., L.B., T.H.N.N., G.S.), and Division of Biochemistry (G.S.), University of Missouri, Columbia, Missouri 65211
  • Tran Hong Nha Nguyen
    Division of Plant Sciences, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center (J.W., K.T., X.-C.Z., G.H.S., L.B., T.H.N.N., G.S.), and Division of Biochemistry (G.S.), University of Missouri, Columbia, Missouri 65211
  • Gary Stacey
    Division of Plant Sciences, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center (J.W., K.T., X.-C.Z., G.H.S., L.B., T.H.N.N., G.S.), and Division of Biochemistry (G.S.), University of Missouri, Columbia, Missouri 65211

抄録

<jats:title>Abstract</jats:title> <jats:p>Chitin is commonly found in fungal cell walls and is one of the well-studied microbe/pathogen-associated molecular patterns. Previous studies showed that lysin motif (LysM)-containing proteins are essential for plant recognition of chitin, leading to the activation of plant innate immunity. In Arabidopsis (Arabidopsis thaliana), the LYK1/CERK1 (for LysM-containing receptor-like kinase1/chitin elicitor receptor kinase1) was shown to be essential for chitin recognition, whereas in rice (Oryza sativa), the LysM-containing protein, CEBiP (for chitin elicitor-binding protein), was shown to be involved in chitin recognition. Unlike LYK1/CERK1, CEBiP lacks an intracellular kinase domain. Arabidopsis possesses three CEBiP-like genes. Our data show that mutations in these genes, either singly or in combination, did not compromise the response to chitin treatment. Arabidopsis also contains five LYK genes. Analysis of mutations in LYK2, -3, -4, or -5 showed that LYK4 is also involved in chitin signaling. The lyk4 mutants showed reduced induction of chitin-responsive genes and diminished chitin-induced cytosolic calcium elevation as well as enhanced susceptibility to both the bacterial pathogen Pseudomonas syringae pv tomato DC3000 and the fungal pathogen Alternaria brassicicola, although these phenotypes were not as dramatic as that seen in the lyk1/cerk1 mutants. Similar to LYK1/CERK1, the LYK4 protein was also localized to the plasma membrane. Therefore, LYK4 may play a role in the chitin recognition receptor complex to assist chitin signal transduction and plant innate immunity.</jats:p>

収録刊行物

  • Plant Physiology

    Plant Physiology 160 (1), 396-406, 2012-06-28

    Oxford University Press (OUP)

被引用文献 (13)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ