Fluorescence in situ hybridization: past, present and future

  • Jeffrey M. Levsky
    Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
  • Robert H. Singer
    Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA

説明

<jats:p>Fluorescence in situ hybridization (FISH), the assay of choice for localization of specific nucleic acids sequences in native context, is a 20-year-old technology that has developed continuously. Over its maturation,various methodologies and modifications have been introduced to optimize the detection of DNA and RNA. The pervasiveness of this technique is largely because of its wide variety of applications and the relative ease of implementation and performance of in situ studies. Although the basic principles of FISH have remained unchanged, high-sensitivity detection,simultaneous assay of multiple species, and automated data collection and analysis have advanced the field significantly. The introduction of FISH surpassed previously available technology to become a foremost biological assay. Key methodological advances have allowed facile preparation of low-noise hybridization probes, and technological breakthroughs now permit multi-target visualization and quantitative analysis - both factors that have made FISH accessible to all and applicable to any investigation of nucleic acids. In the future, this technique is likely to have significant further impact on live-cell imaging and on medical diagnostics.</jats:p>

収録刊行物

被引用文献 (8)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ