A Numerical and Experimental Study of Mass Transfer in the Artificial Kidney

  • Zhijie Liao
    Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506
  • Churn K. Poh
    Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506
  • Zhongping Huang
    Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506
  • Peter A. Hardy
    Center for Biomedical Engineering, University of Kentucky, Lexington, KY 40506
  • William R. Clark
    Baxter Healthcare Corp., Renal Division, McGaw Park, IL 60085
  • Dayong Gao
    Department of Mechanical Engineering and Center for Biomedical Engineering, University of Kentucky, Lexington, KY 40506

抄録

<jats:p>To develop a more efficient and optimal artificial kidney, many experimental approaches have been used to study mass transfer inside, outside, and cross hollow fiber membranes with different kinds of membranes, solutes, and flow rates as parameters. However, these experimental approaches are expensive and time consuming. Numerical calculation and computer simulation is an effective way to study mass transfer in the artificial kidney, which can save substantial time and reduce experimental cost. This paper presents a new model to simulate mass transfer in artificial kidney by coupling together shell-side, lumen-side, and transmembrane flows. Darcy’s equations were employed to simulate shell-side flow, Navier-Stokes equations were employed to simulate lumen-side flow, and Kedem-Katchalsky equations were used to compute transmembrane flow. Numerical results agreed well with experimental results within 10% error. Numerical results showed the nonuniform distribution of flow and solute concentration in shell-side flow due to the entry/exit effect and Darcy permeability. In the shell side, the axial velocity in the periphery is higher than that in the center. This numerical model presented a clear insight view of mass transfer in an artificial kidney and may be used to help design an optimal artificial kidney and its operation conditions to improve hemodialysis.</jats:p>

収録刊行物

被引用文献 (2)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ