K3 surfaces from configurations of six lines in ℙ2 and mirror symmetry II—λ<i>K</i>3-functions
-
- Shinobu Hosono
- Department of Mathematics, Gakushuin University Mejiro, Toshima-ku, Tokyo 171-8588, Japan
-
- Bong H Lian
- Department of Mathematics, Brandeis University, Waltham, MA 02454, USA
-
- Shing-Tung Yau
- Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
この論文をさがす
説明
<jats:title>Abstract</jats:title><jats:p>We continue our study on the hypergeometric system $E(3,6)$ that describes period integrals of the double cover family of K3 surfaces. Near certain special boundary points in the moduli space of the K3 surfaces, we construct the local solutions and determine the so-called mirror maps expressing them in terms of genus 2 theta functions. These mirror maps are the K3 analogues of the elliptic $\lambda $-function. We find that there are two nonisomorphic definitions of the lambda functions corresponding to a flip in the moduli space. We also discuss mirror symmetry for the double cover K3 surfaces and their higher dimensional generalizations. A follow-up paper will describe more details of the latter.</jats:p>
収録刊行物
-
- International Mathematics Research Notices
-
International Mathematics Research Notices 2021 (17), 13231-13281, 2019-11-15
Oxford University Press (OUP)
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1361694369403401344
-
- ISSN
- 16870247
- 10737928
-
- 資料種別
- journal article
-
- データソース種別
-
- Crossref
- KAKEN
- OpenAIRE