CRISPR-Cas guides the future of genetic engineering

  • Gavin J. Knott
    Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
  • Jennifer A. Doudna
    Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.

説明

<jats:p>The diversity, modularity, and efficacy of CRISPR-Cas systems are driving a biotechnological revolution. RNA-guided Cas enzymes have been adopted as tools to manipulate the genomes of cultured cells, animals, and plants, accelerating the pace of fundamental research and enabling clinical and agricultural breakthroughs. We describe the basic mechanisms that set the CRISPR-Cas toolkit apart from other programmable gene-editing technologies, highlighting the diverse and naturally evolved systems now functionalized as biotechnologies. We discuss the rapidly evolving landscape of CRISPR-Cas applications, from gene editing to transcriptional regulation, imaging, and diagnostics. Continuing functional dissection and an expanding landscape of applications position CRISPR-Cas tools at the cutting edge of nucleic acid manipulation that is rewriting biology.</jats:p>

収録刊行物

  • Science

    Science 361 (6405), 866-869, 2018-08-31

    American Association for the Advancement of Science (AAAS)

被引用文献 (18)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ