From Arteries to Capillaries: Approaches to Engineering Human Vasculature

  • Sharon Fleischer
    Department of Biomedical Engineering Columbia University 622 west 168<sup>th</sup> Street VC12‐234 New York NY 10032 USA
  • Daniel Naveed Tavakol
    Department of Biomedical Engineering Columbia University 622 west 168<sup>th</sup> Street VC12‐234 New York NY 10032 USA
  • Gordana Vunjak‐Novakovic
    Department of Biomedical Engineering Columbia University 622 west 168<sup>th</sup> Street VC12‐234 New York NY 10032 USA

説明

<jats:title>Abstract</jats:title><jats:p>From microscaled capillaries to millimeter‐sized vessels, human vasculature spans multiple scales and cell types. The convergence of bioengineering, materials science, and stem cell biology has enabled tissue engineers to recreate the structure and function of different hierarchical levels of the vascular tree. Engineering large‐scale vessels aims to replace damaged arteries, arterioles, and venules and their routine application in the clinic may become a reality in the near future. Strategies to engineer meso‐ and microvasculature are extensively explored to generate models for studying vascular biology, drug transport, and disease progression as well as for vascularizing engineered tissues for regenerative medicine. However, bioengineering tissues for transplantation has failed to result in clinical translation due to the lack of proper integrated vasculature for effective oxygen and nutrient delivery. The development of strategies to generate multiscale vascular networks and their direct anastomosis to host vasculature would greatly benefit this formidable goal. In this review, design considerations and technologies for engineering millimeter‐, meso‐, and microscale vessels are discussed. Examples of recent state‐of‐the‐art strategies to engineer multiscale vasculature are also provided. Finally, key challenges limiting the translation of vascularized tissues are identified and perspectives on future directions for exploration are presented.</jats:p>

収録刊行物

被引用文献 (1)*注記

もっと見る

問題の指摘

ページトップへ