Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview – part II: other clinical applications and complications

  • M. Torabinejad
    Department of Endodontics School of Dentistry Loma Linda University Loma Linda CA USA
  • M. Parirokh
    Endodontology Research Center School of Dentistry Kerman University of Medical Sciences Kerman Iran
  • P. M. H. Dummer
    School of Dentistry College of Biomedical and Life Sciences Cardiff University Cardiff UK

抄録

<jats:title>Abstract</jats:title><jats:p>Mineral trioxide aggregate (MTA) is a dental material used extensively for vital pulp therapies (VPT), protecting scaffolds during regenerative endodontic procedures, apical barriers in teeth with necrotic pulps and open apices, perforation repairs as well as root canal filling and root‐end filling during surgical endodontics. A number of bioactive endodontic cements (BECs) have recently been introduced to the market. Most of these materials have calcium and silicate in their compositions; however, bioactivity is a common property of these cements. These materials include the following: BioAggregate, Biodentine, BioRoot RCS, calcium‐enriched mixture cement, Endo‐CPM, Endocem, EndoSequence, EndoBinder, EndoSeal MTA, iRoot, MicroMega MTA, MTA Bio, MTA Fillapex, MTA Plus, Neo MTA Plus, Ortho MTA, Quick‐Set, Retro MTA, Tech Biosealer, and TheraCal LC. It has been claimed that these materials have properties similar to those of MTA but without the drawbacks. In Part I of this review, the available information on the chemical composition of the materials listed above was reviewed and their applications for VPT was discussed. In this article, the clinical applications of MTA and other BECs will be reviewed for apexification, regenerative endodontics, perforation repair, root canal filling, root‐end filling, restorative procedures, periodontal defects and treatment of vertical and horizontal root fractures. In addition, the literature regarding the possible drawbacks of these materials following their clinical applications is reviewed. These drawbacks include their discolouration potential, systemic effects and retreatability following use as a root filling material. Based on selected keywords, all publications were searched regarding the use of MTA as well as BECs for the relevant clinical applications. Numerous publications were found regarding the use of BECs for various endodontic applications. The majority of these investigations compared BECs with MTA. Despite promising results for some materials, the number of publications using BECs for various clinical applications was limited. Furthermore, most studies had several methodological shortcomings and low levels of evidence.</jats:p>

収録刊行物

被引用文献 (13)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ