<scp>Molcas</scp> 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table

  • Francesco Aquilante
    Department of Chemistry – Ångström The Theoretical Chemistry Programme, Uppsala University Box 518 Uppsala 751 20 Sweden
  • Jochen Autschbach
    Department of Chemistry University at Buffalo, State University of New York Buffalo New York 14260‐3000 USA
  • Rebecca K. Carlson
    Department of Chemistry Supercomputing Institute, and Chemical Theory Center, University of Minnesota Minneapolis Minnesota 55455‐0431 USA
  • Liviu F. Chibotaru
    Division of Quantum and Physical Chemistry, and INPAC, Institute for Nanoscale Physics and Chemistry Katholieke Universiteit Leuven Celestijnenlaan 200F 3001 Belgium
  • Mickaël G. Delcey
    Department of Chemistry – Ångström The Theoretical Chemistry Programme, Uppsala University Box 518 Uppsala 751 20 Sweden
  • Luca De Vico
    Department of Chemistry Copenhagen University, Universitetsparken 5 Copenhagen Ø 2100 Denmark
  • Ignacio Fdez. Galván
    Department of Chemistry – Ångström The Theoretical Chemistry Programme, Uppsala University Box 518 Uppsala 751 20 Sweden
  • Nicolas Ferré
    Université d'Aix‐Marseille, CNRS, Institut de Chimie Radicalaire Campus Étoile/Saint‐Jérôme Case 521, Avenue Esc. Normandie Niemen Marseille Cedex 20 13397 France
  • Luis Manuel Frutos
    Unidad Docente de Química Física, Universidad de Alcalá, E‐28871 Alcalá de Henares Madrid Spain
  • Laura Gagliardi
    Department of Chemistry Supercomputing Institute, and Chemical Theory Center, University of Minnesota Minneapolis Minnesota 55455‐0431 USA
  • Marco Garavelli
    Dipartimento di Chimica “G. Ciamician” Università di Bologna via Selmi 2, IT‐40126 Bologna Italy
  • Angelo Giussani
    Dipartimento di Chimica “G. Ciamician” Università di Bologna via Selmi 2, IT‐40126 Bologna Italy
  • Chad E. Hoyer
    Department of Chemistry Supercomputing Institute, and Chemical Theory Center, University of Minnesota Minneapolis Minnesota 55455‐0431 USA
  • Giovanni Li Manni
    Department of Chemistry Supercomputing Institute, and Chemical Theory Center, University of Minnesota Minneapolis Minnesota 55455‐0431 USA
  • Hans Lischka
    Department of Chemistry and Biochemistry Texas Tech University, Memorial Circle and Boston, Lubbock Texas 79409‐1061 USA
  • Dongxia Ma
    Department of Chemistry Supercomputing Institute, and Chemical Theory Center, University of Minnesota Minneapolis Minnesota 55455‐0431 USA
  • Per Åke Malmqvist
    Department of Theoretical Chemistry Lund University, Chemical Center P.O.B 124 S‐221 00 Lund Sweden
  • Thomas Müller
    Jülich Supercomputing Centre (JSC) Forschungszentrum Jülich GmbH, Institute for Advanced Simulation (IAS) Wilhelm‐Johnen‐Straße Jülich 52425 Germany
  • Artur Nenov
    Dipartimento di Chimica “G. Ciamician” Università di Bologna via Selmi 2, IT‐40126 Bologna Italy
  • Massimo Olivucci
    Department of Biotechnology, Chemistry and Pharmacy University of Siena via Aldo Moro 2 Siena 53100 Italy
  • Thomas Bondo Pedersen
    Centre for Theoretical and Computational Chemistry, Department of Chemistry University of Oslo P.O. Box 1033 Blindern Oslo 0315 Norway
  • Daoling Peng
    College of Chemistry and Environment South China Normal University Guangzhou 510006 China
  • Felix Plasser
    Institute for Theoretical Chemistry, University of Vienna Währingerstraße 17 Vienna A‐1090 Austria
  • Ben Pritchard
    Department of Chemistry University at Buffalo, State University of New York Buffalo New York 14260‐3000 USA
  • Markus Reiher
    ETH Zurich, Laboratorium für Physikalische Chemie Vladimir‐Prelog‐Weg 2 Zurich CH‐8093 Switzerland
  • Ivan Rivalta
    Université de Lyon, CNRS, École Normale Supérieure de Lyon 46 Allée d'Italie Lyon Cedex 07 F‐69364 France
  • Igor Schapiro
    Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE Université de Strasbourg, CNRS UMR 7504 23 Rue du Loess Strasbourg 67034 France
  • Javier Segarra‐Martí
    Dipartimento di Chimica “G. Ciamician” Università di Bologna via Selmi 2, IT‐40126 Bologna Italy
  • Michael Stenrup
    Department of Chemistry – Ångström The Theoretical Chemistry Programme, Uppsala University Box 518 Uppsala 751 20 Sweden
  • Donald G. Truhlar
    Department of Chemistry Supercomputing Institute, and Chemical Theory Center, University of Minnesota Minneapolis Minnesota 55455‐0431 USA
  • Liviu Ungur
    Division of Quantum and Physical Chemistry, and INPAC, Institute for Nanoscale Physics and Chemistry Katholieke Universiteit Leuven Celestijnenlaan 200F 3001 Belgium
  • Alessio Valentini
    Unidad Docente de Química Física, Universidad de Alcalá, E‐28871 Alcalá de Henares Madrid Spain
  • Steven Vancoillie
    Department of Theoretical Chemistry Lund University, Chemical Center P.O.B 124 S‐221 00 Lund Sweden
  • Valera Veryazov
    Department of Theoretical Chemistry Lund University, Chemical Center P.O.B 124 S‐221 00 Lund Sweden
  • Victor P. Vysotskiy
    Department of Theoretical Chemistry Lund University, Chemical Center P.O.B 124 S‐221 00 Lund Sweden
  • Oliver Weingart
    Institut für Theoretische Chemie und Computerchemie, Heinrich‐Heine‐Universität Düsseldorf Universitätsstraße 1 Düsseldorf 40225 Germany
  • Felipe Zapata
    Unidad Docente de Química Física, Universidad de Alcalá, E‐28871 Alcalá de Henares Madrid Spain
  • Roland Lindh
    Department of Chemistry – Ångström The Theoretical Chemistry Programme, Uppsala University Box 518 Uppsala 751 20 Sweden

抄録

<jats:p>In this report, we summarize and describe the recent unique updates and additions to the M<jats:sc>olcas</jats:sc> quantum chemistry program suite as contained in release version 8. These updates include natural and spin orbitals for studies of magnetic properties, local and linear scaling methods for the Douglas–Kroll–Hess transformation, the generalized active space concept in MCSCF methods, a combination of multiconfigurational wave functions with density functional theory in the MC‐PDFT method, additional methods for computation of magnetic properties, methods for diabatization, analytical gradients of state average complete active space SCF in association with density fitting, methods for constrained fragment optimization, large‐scale parallel multireference configuration interaction including analytic gradients via the interface to the C<jats:sc>olumbus</jats:sc> package, and approximations of the CASPT2 method to be used for computations of large systems. In addition, the report includes the description of a computational machinery for nonlinear optical spectroscopy through an interface to the QM/MM package C<jats:sc>obramm</jats:sc>. Further, a module to run molecular dynamics simulations is added, two surface hopping algorithms are included to enable nonadiabatic calculations, and the DQ method for diabatization is added. Finally, we report on the subject of improvements with respects to alternative file options and parallelization. © 2015 Wiley Periodicals, Inc.</jats:p>

収録刊行物

被引用文献 (24)*注記

もっと見る

問題の指摘

ページトップへ